【題目】已知函數(shù)
(1)當(dāng)時,解不等式
(2)若關(guān)于的方程的解集中怡好有一個元素,求的取值范圍;
(3)設(shè)若對任意函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
【答案】(1)或;(2)或或;(3)
【解析】
(1)當(dāng)時,解對數(shù)不等式即可.
(2)根據(jù)對數(shù)的運算法則進行化簡,轉(zhuǎn)化為一元二次方程,討論的取值范圍進行求解即可.
(3)根據(jù)條件得到恒成立,利用換元法進行轉(zhuǎn)化,結(jié)合對勾函數(shù)的單調(diào)性進行求解即可.
解:(1)當(dāng)時,,
由,得,
即,
解得或,
即不等式的解集為或;
(2)由得.
即,
即,①
則,
即,②,
當(dāng)時,方程②的解為,代入①,成立
當(dāng)時,方程②的解為,代入①,成立
當(dāng)且時,方程②的解為或,
若是方程①的解,則,即,
若是方程①的解,則,即,
則要使方程①有且僅有一個解,則.
綜上,若方程的解集中恰好有一個元素,
則的取值范圍是或或.
(3)函數(shù)在區(qū)間上單調(diào)遞減,
由題意得,
即,
即即
設(shè),則,
,
當(dāng)時,,
當(dāng)時,,
在上遞減,
,
,
∴實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠需要建造一個倉庫,根據(jù)市場調(diào)研分析,運費與工廠和倉庫之間的距離成正比,倉儲費與工廠和倉庫之間的距離成反比,當(dāng)工廠和倉庫之間的距離為4千米時,運費為20萬元,倉儲費為5萬元.求:工廠和倉庫之間的距離為多少千米時,運費與倉儲費之和最小,最小為多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是以為直徑的圓上兩點,,,是上一點,且,將圓沿直徑折起,使點在平面的射影在上,已知.
(1)求證:⊥平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集為,求實數(shù)的值;
(2)設(shè),若不等式對都成立,求實數(shù)的取值范圍;
(3)若且時,求函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)若對任意的,總存在使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若直線與曲線交于、兩點,設(shè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中,且, 為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且存在,使得對任意的都成立,求的最小值;
(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對任意的均成立. 求所有滿足條件的數(shù)列中的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com