【題目】在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.
(1)求拋物線的方程;
(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設(shè)的中點為,若、、四點共圓,求直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解手機品牌的選擇是否和年齡的大小有關(guān),隨機抽取部分華為手機使用者和蘋果機使用者進行統(tǒng)計,統(tǒng)計結(jié)果如下表:
年齡 手機品牌 | 華為 | 蘋果 | 合計 |
30歲以上 | 40 | 20 | 60 |
30歲以下(含30歲) | 15 | 25 | 40 |
合計 | 55 | 45 | 100 |
附:
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
根據(jù)表格計算得的觀測值,據(jù)此判斷下列結(jié)論正確的是( )
A.沒有任何把握認為“手機品牌的選擇與年齡大小有關(guān)”
B.可以在犯錯誤的概率不超過0.001的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
C.可以在犯錯誤的概率不超過0.01的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
D.可以在犯錯誤的概率不超過0.01的前提下認為“手機品牌的選擇與年齡大小無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考取消文理科,實行“”模式,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人,并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)把年齡在稱為中青年,年齡在稱為中老年,請根據(jù)上表完成列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?
了解新高考 | 不了解新高考 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線和曲線交于A,B兩點(點A在第二象限).過A作斜率為的直線交曲線M于點C(不同于點A),過點作斜率為的直線交曲線于E,F兩點,且.
(I)求的取值范圍;
(Ⅱ)設(shè)的面積為S,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有如下命題,其中真命題的標號為( )
A.若冪函數(shù)的圖象過點,則
B.函數(shù)(,且)的圖象恒過定點
C.函數(shù)有兩個零點
D.若函數(shù)在區(qū)間上的最大值為4,最小值為3,則實數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓:()過點,離心率為,其左、右焦點分別為,,且過焦點的直線交橢圓于,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標為,設(shè)直線與直線的斜率分別為,試證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com