【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,平面ABCD

BE與平面EAC所成角的正弦值;

線段BE上是否存在點M,使平面平面DFM?若存在,求的值;若不存在,請說明理由.

【答案】(1);(2)見解析

【解析】

C為原點,CDx軸,CBy軸,CFz軸,建立空間直角坐標系,求出平面EAC的法向量,利用向量法能求出BE與平面EAC所成角的正弦值.

設線段BE上存在點b,,,使平面平面DFM,求出平面DMF的法向量和平面EAC的法向量,利用向量法求出線段BE上不存在點M,使平面平面DFM

四邊形CDEF為正方形,四邊形ABCD為梯形,,平面ABCD

C為原點,CDx軸,CBy軸,

CFz軸,建立空間直角坐標系,

,則1,

0,,1,,

0,0,

,1,,

0,,

設平面EAC的法向量y,

,取,

,

BE與平面EAC所成角為,

與平面EAC所成角的正弦值為

線段BE上不存在點M,使平面平面DFM

理由如下:

設線段BE上存在點b,,,,使平面平面DFM,

,,,0,

設平面DMF的法向量y,

,取,得,

平面平面DFM,平面EAC的法向量,

,解得,

線段BE上不存在點M,使平面平面DFM

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設

(1)求燈柱AB的高h(用表示);

(2)此公司應該如何設置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列四個命題中,錯誤的有(

A.坐標平面內(nèi)的任何一條直線均有傾斜角和斜率

B.直線的傾斜角的取值范圍是

C.若一條直線的斜率為,則此直線的傾斜角為

D.若一條直線的傾斜角為,則此直線的斜率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標準采用世界衛(wèi)生組織設定的最寬限值,即日均值在以下空氣質(zhì)量為優(yōu);在之間空氣質(zhì)量為良;在之間空氣質(zhì)量為輕度污染.某市環(huán)保局從該市2018年上半年每天的日均值數(shù)據(jù)中隨機抽取20天的數(shù)據(jù)作為樣本,將日均值統(tǒng)計如下

日均值(

天數(shù)

4

6

5

3

2

(1)在空氣質(zhì)量為輕度污染的數(shù)據(jù)中,隨機抽取兩天日均值數(shù)據(jù),求其中恰有一天日均值數(shù)據(jù)在之間的概率;

(2)將以上樣本數(shù)據(jù)繪制成頻率分布直方圖(直接作圖):

(3)該市規(guī)定:全年日均值的平均數(shù)不高于,則認定該市當年的空氣質(zhì)量達標.現(xiàn)以這20天的日均值的平均數(shù)來估計2018年的空氣質(zhì)量情況,試預測該市2018年的空氣質(zhì)量是否達標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地上年度電價為元,年用電量為億千瓦時.本年度計劃將電價調(diào)至之間,經(jīng)測算,若電價調(diào)至元,則本年度新增用電量(億千瓦時)與元成反比例.又當時,.

1)求之間的函數(shù)關系式;

2)若每千瓦時電的成本價為元,則電價調(diào)至多少時,本年度電力部門的收益將比上年增加?[收益=用電量×(實際電價-成本價)]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學團委組織了紀念抗日戰(zhàn)爭勝利73周年的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

1)求第四組的頻率,并補全這個頻率分布直方圖;

2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設獎300元,4格各設獎200元,其余4格各設獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司Mobike計劃在甲、乙兩座城市共投資160萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資30萬元,由前期市場調(diào)研可知:甲城市收益P與投入單位:萬元滿足,乙城市收益Q與投入單位:萬元滿足,設甲城市的投入為單位:萬元,兩個城市的總收益為單位:萬元

1)寫出兩個城市的總收益萬元關于甲城市的投入萬元的函數(shù)解析式,并求出當甲城市投資72萬元時公司的總收益;

2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們學校是一所有著悠久傳統(tǒng)文化的學校,我們學校全名叫重慶外國語學校(Chongqing Foreign Language School),又名四川外國語大學附屬外國語學校,簡稱重外,1981年,被定為四川省首批辦好的重點中學;1997年,被列為重慶市教委首批辦好的直屬重點中學之一;2001年被國家教育部指定為20%高三學生享有保送資格的全國十三所學校之一,今年我校保送取得了非常輝煌的成績,目前為止,包括清華大學,北京大學在內(nèi)目前共保送122名同學,其中北京大學,南開大學,北京外國語大學保送的人數(shù)成公差為正數(shù)的等差數(shù)列,三個學校保送人數(shù)之和為24人,三個學校保送學生人數(shù)之積為312,則北京外國語大學保送的人數(shù)為(以上數(shù)據(jù)均來自于學校官網(wǎng))(

A.10B.11C.13D.14

查看答案和解析>>

同步練習冊答案