分析 先由正弦定理和兩角和與差的正弦公式得到a+bR=2√3sin(A+30°),再根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出.
解答 解:在△ABC中,由正弦定理可得:asinA=sinB=2R,
∴a=2RsinA,b=2RsinB,
∴a+bR=2sinA+2sinB=2sinA+2sin(120°-A)
=2(sinA+√32cosA+12sinA)=2√3(√32sinA+12cosA)=2√3sin(A+30°),
∵C=60°,
∴0°<A<120°,
∴30°<A+30°<150°,
∴12<sin(A+30°)≤1,
∴√3<2√3sin(A+30°)≤2√3,則a+bR的取值范圍為(√3,2√3].
故答案為:(√3,2√3].
點(diǎn)評(píng) 本題考查了正弦定理和兩角和差的正弦公式以及誘導(dǎo)公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+3)2+(y-4)2=2 | B. | (x-4)2+(y+3)2=2 | C. | (x+4)2+(y-3)2=2 | D. | (x-3)2+(y-4)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若-2≤m<0,則函數(shù)f(x)=-x2+mx在區(qū)間(-4,-1)上單調(diào)遞增 | |
B. | “1≤x≤4”是“log15x≥-1”的充分不必要條件 | |
C. | x=π3是函數(shù)f(x)=cos 2x-√3sin 2x的一條對(duì)稱軸 | |
D. | 若a∈[12,6),則函數(shù)f(x)=12x2-alnx在區(qū)間(1,3)上有極值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若“p且q”為假,則p,q至少有一個(gè)是假命題 | |
B. | 命題“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0” | |
C. | 設(shè)A,B是兩個(gè)集合,則“A⊆B”是“A∩B=A”的充分不必要條件 | |
D. | 當(dāng)a<0時(shí),冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com