【題目】已知橢圓C:過點A,兩個焦點為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
科目:高中數(shù)學 來源: 題型:
【題目】在一個十進制正整數(shù)中,如果它含有偶數(shù)(包括零)個數(shù)字 8 ,則稱它為“優(yōu)數(shù)” ,否則就稱它為“非優(yōu)數(shù)” .那么,長度(位數(shù))不超過 (是正整數(shù))的所有“優(yōu)數(shù)” 的個數(shù)是 __________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某校高一100名學生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績處于內(nèi)與內(nèi)的頻數(shù)之和等于成績處于內(nèi)的頻數(shù),根據(jù)圖中的信息,回答下列問題:
(1)求頻率分布直方圖中未畫出的小矩形的面積之和;
(2)求成績處于內(nèi)與內(nèi)的頻率之差;
(3)用分層抽樣的方法從成績不低于120分的學生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,求這2人中恰有一人成績低于130分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,,點滿足,記點的軌跡為.
(1)求的方程;
(2)設(shè)直線與交于、兩點,求的面積(為坐標原點);
(3)設(shè)是線段中垂線上的動點,過作的兩條切線、,、分別為切點,判斷是否存在定點,直線始終經(jīng)過點,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,且兩個焦點的坐標分別為, .
(1)求的方程;
(2)若, , 為上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩地的高速公路全長166千米,汽車從甲地進入該高速公路后勻速行駛到乙地,車速(千米/時).已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分為,固定部分為220元.
(1)把全程運輸成本(元)表示為速度(千米/時)的函數(shù),并指出這個函數(shù)的定義域;
(2)汽車應(yīng)以多大速度行駛才能使全程運輸成本最?最小運輸成本為多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點M、F分別是線段AA1、BC的中點.
(1)求證:AF⊥DD1;
(2)求證:AF∥平面MBC1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com