已知函數(shù)都是定義在上的奇函數(shù),設(shè),若,則       .
0

試題分析:因為函數(shù)都是定義在上的奇函數(shù),,所以也是奇函數(shù),又因為,所以,所以
,所以0.
點評:注意到本小題中是奇函數(shù)是解決本小題的關(guān)鍵,進而利用奇函數(shù)的性質(zhì)求解即可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若,求的值;
(Ⅱ)若對于恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)上是增函數(shù),且
① 確定函數(shù)的解析式;
② 解不等式<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) )
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法:
①方程的實數(shù)解的個數(shù)為1;
②函數(shù)的圖象可以由函數(shù)(其中)平移得到;
③若對,有的周期為2;
④函數(shù)與函數(shù)的圖象關(guān)于直線對稱.
其中正確的命題的序號            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)某市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬人,平均每人每年創(chuàng)造產(chǎn)值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強第三產(chǎn)業(yè)。分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100)。而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬元。
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=時,方程f(1-x)=有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,用符號表示不超過的最大整數(shù)。函數(shù)有且僅有3個零點,則的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為確保信息安全,需設(shè)計軟件對信息加密,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文:對應(yīng)密文:,當接收方收到密文14,9,23,28時,解密得到的明文為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案