【題目】已知函數(shù),.

1)若函數(shù)的圖象在處的切線與軸平行,求的值;

2)當(dāng)時,恒成立,求的最小值.

【答案】12

【解析】

1)求解出導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)在的值為即可計算出的值;

2)解法一:采用分類討論的思想分析的取值范圍,確定出最小值;解法二:采用參變分離的思想分析問題,構(gòu)造新函數(shù),利用新函數(shù)的最值與的關(guān)系求解出的最小值.

(1)依題意;

(2)解法一:

,

顯然,令,則,

所以單調(diào)遞增,且

當(dāng)時,,單調(diào)遞增,

等價于,此式已成立,從而滿足條件,

當(dāng)時,由單調(diào)遞增,

,

使得,即,

,即,得

又令,即,得,因此處取得最小值,

,又,故,

設(shè),,且,

法一:,故單調(diào)遞減,由,

,單調(diào)遞減,

所以,即;

法二:,由,即下同法一;

綜上可知,因此的最小值為;

解法二:當(dāng)時,恒成立,因求的最小值,不妨設(shè),

則只研究,設(shè),下求;

,由,并記,,

,亦即,

,因此單調(diào)遞增,在單調(diào)遞減,

所以,即,因此的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某無縫鋼管廠只生產(chǎn)甲、乙兩種不同規(guī)格的鋼管,鋼管有內(nèi)外兩個口徑,甲種鋼管內(nèi)外兩口徑的標(biāo)準(zhǔn)長度分別為,乙種鋼管內(nèi)外兩個口徑的標(biāo)準(zhǔn)長度分別為.根據(jù)長期的生產(chǎn)結(jié)果表明,兩種規(guī)格鋼管每根的長度都服從正態(tài)分布,長度在之外的鋼管為廢品,要回爐熔化,不準(zhǔn)流入市場,其他長度的鋼管為正品.

1)在該鋼管廠生產(chǎn)的鋼管中隨機抽取10根進(jìn)行檢測,求至少有1根為廢品的概率;

2)監(jiān)管部門規(guī)定每種規(guī)格鋼管的“口徑誤差”的計算方式為:若鋼管的內(nèi)外兩個口徑實際長分別為,標(biāo)準(zhǔn)長分別為,則“口徑誤差”為,按行業(yè)生產(chǎn)標(biāo)準(zhǔn),其中“一級品”“二級品”“合格品”的“口徑誤差”的范圍分別是(正品鋼管中沒有“口徑誤差”大于的鋼管),現(xiàn)分別從甲、乙兩種產(chǎn)品的正品中各隨機抽取100根,分別進(jìn)行“口徑誤差”的檢測,統(tǒng)計后,繪制其頻率分布直方圖如圖所示:

    甲種鋼管               乙種鋼管

已知經(jīng)銷商經(jīng)銷甲種鋼管,其中“一級品”的利潤率為0.3,“二級品”的利潤率為0.18,“合格品”的利潤率為0.1;經(jīng)銷乙種鋼管,其中“一級品”的利潤率為0.25,“二級品”的利潤率為0.15,“合格品”的利潤率為0.08,若視頻率為概率.

(ⅰ)若經(jīng)銷商對甲、乙兩種鋼管各進(jìn)了100萬元的貨,分別表示經(jīng)銷甲、乙兩種鋼管所獲得的利潤,求的數(shù)學(xué)期望和方差,并由此分析經(jīng)銷商經(jīng)銷兩種鋼管的利弊;

(ⅱ)若經(jīng)銷商計劃對甲、乙兩種鋼管總共進(jìn)100萬元的貨,則分別在甲、乙兩種鋼管上進(jìn)貨多少萬元時,可使得所獲利潤的方差和最小?

附:若隨機變量服從正態(tài)分布,則,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,是橢圓上一動點(與左、右頂點不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點,過軸的垂線交橢圓與另一點不與重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究不同性別在處理多任務(wù)時的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時完成多個任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時間分布.以下結(jié)論,對志愿者完成任務(wù)所需的時間分布圖表理解正確的是(

①總體看女性處理多任務(wù)平均用時更短;

②所有女性處理多任務(wù)的能力都要優(yōu)于男性;

③男性的時間分布更接近正態(tài)分布;

④女性處理多任務(wù)的用時為正數(shù),男性處理多任務(wù)的用時為負(fù)數(shù).

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點 與上頂點的距離為

(Ⅰ)求橢圓的方程和焦點的坐標(biāo);

(Ⅱ)點在橢圓上,線段的垂直平分線與軸相交于點,若為等邊三角形,求點的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校高三年級共1000名男生中隨機抽取50人測量身高,據(jù)測量,被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估計高三年級全體男生身高在以上(含)的人數(shù);

(2)學(xué)校決定讓這五十人在運動會上組成一個高旗隊,在這五十人中要選身高在以上(含)的兩人作為隊長,求這兩人在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊需對隊員進(jìn)行限時的仰臥起坐達(dá)標(biāo)測試.已知隊員的測試分?jǐn)?shù)與仰臥起坐

個數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊員最多進(jìn)行三組測試,每組限時1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計,隊員“喵兒”在一分鐘內(nèi)限時測試的頻率分布直方圖如下:

(1)計算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為A1,右焦點為F2,過點F2作垂直于x軸的直線交該橢圓于M、N兩點,直線A1M的斜率為

)求橢圓的離心率;

)若△A1MN的外接圓在M處的切線與橢圓相交所得弦長為,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案