【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

【答案】解:(I)由|2x﹣m|≤1,得 .∵不等式的整數(shù)解為2,∴ 3≤m≤5. 又不等式僅有一個(gè)整數(shù)解2,∴m=4.
(Ⅱ)由(Ⅰ)知,m=4,故a4+b4+c4=1,
由柯西不等式可知;(a2+b2+c22≤(12+12+12)[(a22+(b22+(c22]
所以(a2+b2+c22≤3,即 ,
當(dāng)且僅當(dāng) 時(shí)取等號(hào),最大值為
【解析】(Ⅰ)由條件可得 ,求得3≤m≤5.根據(jù)不等式僅有一個(gè)整數(shù)解2,可得整數(shù)m的值.(Ⅱ)根據(jù)a4+b4+c4=1,利用柯西不等式求得(a2+b2+c22≤3,從而求得a2+b2+c2的最大值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對(duì)值不等式的解法和二維形式的柯西不等式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào);二維形式的柯西不等式:當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善居民的生活環(huán)境,政府?dāng)M將一公園進(jìn)行改造擴(kuò)建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設(shè)計(jì)要求,以居民小區(qū)和圓弧上點(diǎn)為線(xiàn)段向半圓外作等腰直角三角形為直角頂點(diǎn)),使改造后的公園成四邊形,如圖所示.

1)若時(shí),與出入口的距離為多少米?

2設(shè)計(jì)在什么位置時(shí),公園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2 . (I)記
(i)討論函數(shù)F(x)單調(diào)性;
(ii)證明當(dāng)m>0時(shí),F(xiàn)(﹣1+m)>F(﹣1﹣m)恒成立;
(II)令G(x)=af(x)+g(x)(a∈R),設(shè)函數(shù)G(x)有兩個(gè)零點(diǎn),求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐中,過(guò)點(diǎn)的三條棱PA、AB、AD兩兩垂直且相等,E,F(xiàn)分別是AC,PB的中點(diǎn).

(Ⅰ)證明:EF//平面PCD;

(Ⅱ)求EF與平面PAC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓M: + =1(a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B,經(jīng)過(guò)點(diǎn)F的直線(xiàn)l與橢圓M交于C,D兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標(biāo)系Oxyz

(1)若t=1,求異面直線(xiàn)AC1A1B所成角的大;

(2)若t=5,求直線(xiàn)AC1與平面A1BD所成角的正弦值;

(3)若二面角A1—BD—C的大小為120°,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足Sn﹣2an=n﹣4.
(1)證明{Sn﹣n+2}為等比數(shù)列;
(2)設(shè)數(shù)列{Sn}的前n項(xiàng)和Tn , 比較Tn與2n+2﹣5n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )

A. 的極小值點(diǎn),則在區(qū)間上單調(diào)遞減

B. 函數(shù)的圖像可以是中心對(duì)稱(chēng)圖形

C. ,使

D. 的極值點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的值域是,則實(shí)數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案