分析 (1)由$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.$消去參數(shù)α,得曲線C1的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化方法,得到曲線C2的直角坐標(biāo)方程;
(2)設(shè)P(2$\sqrt{2}$cosα,2sinα),利用點到直線的距離公式,即可求|PQ|的最小值.
解答 解:(1)由$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.$消去參數(shù)α,得曲線C1的普通方程為$\frac{x^2}{8}+\frac{y^2}{4}=1$.
由$ρcosθ-\sqrt{2}ρsinθ-5=θ$得,曲線C2的直角坐標(biāo)方程為$x-\sqrt{2}y-5=0$.
(2)設(shè)P(2$\sqrt{2}$cosα,2sinα),則
點P到曲線C2的距離為$d=\frac{{|{2\sqrt{2}cosα-2\sqrt{2}sinα-5}|}}{{\sqrt{1+2}}}=\frac{{|{4cos({α+\frac{π}{4}})-5}|}}{{\sqrt{3}}}=\frac{{5-4cos({α+\frac{π}{4}})}}{{\sqrt{3}}}$.
當(dāng)$cos({α+\frac{π}{4}})=1$時,d有最小值$\frac{{\sqrt{3}}}{3}$,所以|PQ|的最小值為$\frac{{\sqrt{3}}}{3}$.
點評 本題考查參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查點到直線距離公式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分數(shù) | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象向右平移$\frac{π}{4}$個單位長度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的圖象 | |
B. | 若f(x1)=f(x2),則x1-x2=kπ,k∈Z | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5}{8}π$對稱 | |
D. | f(x)的圖象關(guān)于點$(-\frac{3}{8}π,0)$對稱 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com