【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價收費,超出的部分按議價收費.為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖所示,用電量在的居民戶數(shù)比用電量在的居民戶數(shù)多11戶.

1)求直方圖中,的值;

2)(i)用樣本估計總體,如果希望至少85%的居民月用電量低于標(biāo)準(zhǔn),求月用電量的最低標(biāo)準(zhǔn)應(yīng)定為多少度,并說明理由;

ii)若將頻率視為概率,現(xiàn)從該市所有居民中隨機抽取3戶,其中月用電量低于(i)中最低標(biāo)準(zhǔn)的居民戶數(shù)為,求的分布列及數(shù)學(xué)期望

【答案】1;(2)(i)最低標(biāo)準(zhǔn)應(yīng)定為260度,見解析(ii)分布列見解析,2.55

【解析】

1)根據(jù)7個矩形的面積和為1以及用電量在的居民戶數(shù)比用電量在的居民戶數(shù)多11戶列方程組成方程組可解得結(jié)果;

2)(i)根據(jù)直方圖計算出樣本中月用電量不低于260度的居民戶數(shù)有戶,占樣本總的15%,由此可得結(jié)果為260度;

i)根據(jù)題意分析可得,利用二項分布的概率公式可得分布列和數(shù)學(xué)期望.

1)由題意,得

所以

2)(i)樣本中月用電量不低于260度的居民戶數(shù)有戶,占樣本總的15%,用樣本估計總體,要保證至少85%的居民月用量低于標(biāo)準(zhǔn),故最低標(biāo)準(zhǔn)應(yīng)定為260度.

i)因為,所以

所以的分布列為:

0

1

2

3

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(當(dāng)較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)院為篩查某種疾病,需要血檢,現(xiàn)有份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,需要檢驗次;

方式二:混合檢驗,把每個人的血樣分成兩份,取個人的血樣各一份混在一起進行檢驗,如果結(jié)果是陰性,那么對這個人只作一次檢驗就夠了;如果結(jié)果是陽性,那么再對這個人的另一份血樣逐份檢驗,此時這份血液的檢驗次數(shù)總共為.

1)假設(shè)有6份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗岀來的概率;

2)假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陽性結(jié)果的概率為.現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

①運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式

②若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),當(dāng)時,求函數(shù)的單調(diào)減區(qū)間及極大值;

2)設(shè)函數(shù)有兩個極值點,

①求實數(shù)的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓中,,,的面積為1,

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點,、是橢圓的左右兩個焦點,直線、分別交,是否存在點,使,若存在,求出點的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展,現(xiàn)從某電子商務(wù)平臺評價系統(tǒng)中隨機選出200次成功交易,并對其評價進行統(tǒng)計,統(tǒng)計結(jié)果顯示:網(wǎng)購者對商品的滿意率為0.70,對快遞的滿意率為0.60,其中對商品和快遞都滿意的交易為80次.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答在犯錯誤的概率不超過0.10的前提下,能否認為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

2)為進一步提高購物者的滿意度,平臺按分層抽樣方法從200次交易中抽取10次交易進行問卷調(diào)查,詳細了解滿意與否的具體原因,并在這10次交易中再隨機抽取2次進行電話回訪,聽取購物者意見.求電話回訪的2次交易至少有一次對商品和快遞都滿意的概率.

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年高考數(shù)學(xué)的全國Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標(biāo)和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測的命題采用了全國Ⅲ卷的形式,在測試結(jié)束后,該校數(shù)學(xué)組教師對該校全體高三學(xué)生的選做題得分情況進行了統(tǒng)計,得到兩題得分的列聯(lián)表如下(已知每名學(xué)生只做了一道題):

選做22

選做23

合計

文科人數(shù)

50

60

理科人數(shù)

40

總計

400

1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認為“選做題的選擇”與“文、理科的科類”有關(guān);

2)經(jīng)統(tǒng)計,第23題得分為0的學(xué)生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學(xué)生中隨機抽取6名進行單獨輔導(dǎo),并在輔導(dǎo)后隨機抽取2名學(xué)生進行測試,求被抽中進行測試的2名學(xué)生均為理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系,已知曲線為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點且與直線平行的直線, 兩點,求點, 的距離之積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2010年至2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個人計算機及智能手機的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機遇,全球連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)如下折線圖,下列結(jié)論正確的個數(shù)為(

①每年市場規(guī)模逐年增加;

②市場規(guī)模增長最快的是2013年至2014年;

③這8年的市場規(guī)模增長率約為40%;

2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn).

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案