設實數(shù)x,y滿足
x2
6
+
y2
3
=1,則x+y的最小值是
 
考點:基本不等式
專題:計算題,不等式的解法及應用
分析:令t=x+y,聯(lián)立
x2
6
+
y2
3
=1
t=x+y
,消掉y后得關于x的二次方程,令△≥0可求t的范圍.
解答: 解:令t=x+y,
x2
6
+
y2
3
=1
t=x+y
,得3x2-4tx+2t2-6=0,
則△=16t2-4×3(2t2-6)≥0,解得-3≤t≤3,
∴x+y的最小值為-3,
故答案為:-3.
法二:令x=
6
cosθ,y=
3
sinθ
∴x+y=
3
sinθ+
6
cosθ
=
6+3
sin(θ+α)
∴x+y的最小值為-3,
點評:該題考查函數(shù)最值的求解、不等式的解法,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AC=BC=1,AA1=2.以AB,BC為鄰邊作平行四邊形ABCD,連接DA1和DC1
(Ⅰ)求證:A1D∥平面BCC1B1;
(Ⅱ)求直線CC1與平面DA1C1所成角的正弦值;
(Ⅲ)線段BC上是否存在點F,使平面DA1C1與平面A1C1F垂直?若存在,求出BF的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的首項a1=1,且a2是a1和a6的等比中項,那么公差d=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin
1
2
ωx在(0,π)內(nèi)是減函數(shù),則ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓C的方程為ρ=1,直線l的方程為ρsin(θ+
π
4
)=
2
,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個總體分為A、B兩層,用分層抽樣的方法從總體中抽取一個容量為20的樣本,已知B層中的每個個體被抽到的概率都為
1
12
,則總體中的個體數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+4x+7在x∈[-3,5]上的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在xOy平面上,點A(1,0),點B在單位圓上,∠AOB=θ(0<θ<π),若
OA
+
OB
=
OC
,四邊形OACB的面積用Sθ表示,則Sθ+
OA
OC
-1的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

任取一自然數(shù),則該數(shù)平方的未位數(shù)是6的概率是( 。
A、
2
9
B、
1
4
C、
3
10
D、
1
5

查看答案和解析>>

同步練習冊答案