已知函數(shù)y=(1-k)x2+2x+1(k∈R),當(dāng)k取何值時,該函數(shù)存在零點,求出零點.
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別討論①k=1時,②k≠1時的情況,再分別求出k的范圍和x的值即可.
解答: 解:①k=1時,y=2x+1,存在零點x=-
1
2
,
②k≠1時,y=(1-k)x2+2x+1為二次函數(shù),
由題意得:△=4-4(1-k)=4k≥0,
解得:k≥0,
∴x=
-2±2
k
2(1-k)
=
-1±
k
1-k
點評:本題考察了函數(shù)的零點問題,一次函數(shù),二次函數(shù)的性質(zhì)問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若以O(shè)為極點,x軸正半軸為極軸,曲線C1的極坐標(biāo)方程為:ρ2-4ρcosθ-4ρsinθ+6=0,曲線C2的參數(shù)方程為:
x=-2-
2
t
y=3+
2
t
(t為參數(shù)),則曲線C1上的點到曲線C2上的點距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定兩個命題,P:|-a+2|<2;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根.如果P∨Q為真命題,P∧Q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個平面α,β,γ,α⊥γ,β⊥γ,α∩β=a,求證:a⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項公式;
(2)求{an}的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的對角線AC、BD相交于點O,AO=2BO=4,將菱形ABCD逆時針旋轉(zhuǎn)90°得到菱形A′B′C′D′,求兩個菱形重合部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“∵y=x3是奇函數(shù)∴y=x3的圖象關(guān)于原點對稱.”以上推理的大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z2=2cosθ+(λ+3sinθ)i,z1=m+(4-m2)i(m∈R),(λ,θ∈R)并且z1=z2,則λ的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考察棉花種子經(jīng)過處理與否跟生病之間的關(guān)系得到下表數(shù)據(jù):
種子處理種子未處理總計
得病32101133
不得病61213274
總計93314407
根據(jù)以上數(shù)據(jù),則種子經(jīng)過處理與否跟生病
 

查看答案和解析>>

同步練習(xí)冊答案