【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.

(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過的人與性別有關(guān);

平均車速超過

人數(shù)

平均車速不超過

人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(Ⅱ )以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學期望.

參考公式: ,其中

參考數(shù)據(jù):

0.150

0.100

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)有的把握,(Ⅱ) ,分布列見解析

【解析】試題分析: (Ⅰ)先根據(jù)題意填寫表格(注意對應(yīng)關(guān)系),再代入公式,并將計算結(jié)果與參考數(shù)據(jù)進行對照,確定把握率范圍,進而判段是否有的把握.(Ⅱ)根據(jù)頻率估計概率得:駕駛員為女性且車速不超過的車輛的概率為.由于隨機變量服從二項分布,根據(jù)公式 可得隨機變量對應(yīng)的概率,列表可得分布列,根據(jù)可得數(shù)學期望.

試題解析:解:(Ⅰ)

平均車數(shù)超過

人數(shù)

平均車速不超過

人數(shù)

合計

男性駕駛員人數(shù)

20

10

30

女性駕駛員人數(shù)

5

15

20

合計

25

25

50

,

所以有的把握認為平均車速超過與性別有關(guān).

(Ⅱ)根據(jù)樣本估計總體的思想,從高速公路上行駛的大量家用轎車中隨即抽取1輛,駕駛員為女性且車速不超過的車輛的概率為.

的可能取值為,且,

,

,

分布列為:

0

1

2

3

.

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2-2mx+4m2-6=0的兩不等根為α,β,試求(α-1)2+(β-1)2的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)a.

(1)f(0);

(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;

(3)f(x)為奇函數(shù),求滿足f(ax)<f(2)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的極坐標方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點P,Q.

(Ⅰ)寫出圓C的直角坐標方程,并求圓心的坐標與半徑;

(Ⅱ)若弦長|PQ|=4,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為.設(shè)過點的直線與橢圓相交于不同兩點, 周長為.

)求橢圓C的標準方程;

(Ⅱ)已知點,證明:當直線變化時,總有TA與的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,分別為,的中點,平面平面,且.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.

(Ⅰ)求實數(shù)a,b的值;

(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:

①函數(shù)的定義域是;②函數(shù)的值域是;

③函數(shù)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)數(shù)是否屬于集合A?并簡要說明理由;

(2)對于(1)中你認為屬于集合A的函數(shù),不等式

是否對于任意的恒成立?若成立,請給出證明;若不成立,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) ,且函數(shù)的圖象關(guān)于直線對稱。

(1)求函數(shù)在區(qū)間上最大值;

(2)設(shè),不等式上恒成立,求實數(shù)的取值范圍;

(3)設(shè)有唯一零點,求實數(shù)的值。

查看答案和解析>>

同步練習冊答案