【題目】已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).

1)若,求直線的方程;

2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線軸上的定點(diǎn).

【答案】1;(2)見解析

【解析】

1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;

2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡可得結(jié)果.

1)由條件可知直線的斜率存在,則

可設(shè)直線的方程為,則,

,有,

所以,

在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,

故所求直線方程為.

(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)

2)設(shè),則,

直線的方程為.

,

,

解得,

,

當(dāng)時(shí),,

故直線恒過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音、短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪140位市民進(jìn)行調(diào)查,其中每天玩微信超過6小時(shí)的用戶稱為微信控,否則稱其為非微信控, 調(diào)查結(jié)果統(tǒng)計(jì)如下:

微信控

非微信控

合計(jì)

女性

60

男性

30

合計(jì)

70

140

1)根據(jù)以上數(shù)據(jù),把表格中的數(shù)據(jù)填寫完整;

2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

①是否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為微信控性別有關(guān);

②已知在被調(diào)查的女性微信控市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取2人,求至少有1位老師的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.

(1)的方程;

(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線為參數(shù),),曲線為參數(shù)).若曲線相切.

1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的極坐標(biāo)方程;

2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的極值;

2)若為整數(shù),,且,不等式成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面是平行四邊形,平面,,,中點(diǎn),點(diǎn)在棱上移動(dòng).

(1)若,求證:;

(2)若,當(dāng)點(diǎn)中點(diǎn)時(shí),求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù).

1)求單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:若是函數(shù)的兩個(gè)零點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),都有成立,求的取值范圍;

(Ⅲ)試問過點(diǎn)可作多少條直線與曲線相切?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案