精英家教網 > 高中數學 > 題目詳情

【題目】某企業(yè)接到生產3000臺某產品的A,B,C三種部件的訂單,每臺產品需要這三種部件的數量分別為2,2,1(單位:件).已知每個工人每天可生產A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產這三種部件,生產B部件的人數與生產A部件的人數成正比,比例系數為K(K為正整數).
(1)設生產A部件的人數為x,分別寫出完成A,B,C三種部件生產需要的時間;
(2)假設這三種部件的生產同時開工,試確定正整數K的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數分組方案.

【答案】
(1)

解:設寫出完成A,B,C三種部件生產需要的時間分別為T1(x),T2(x),T3(x)

,

其中x,kx,200﹣(1+k)x均為1到200之間的正整數


(2)

解:完成訂單任務的時間為f(x)=max{T1(x),T2(x),T3(x)},其定義域為

∴T1(x),T2(x)為減函數,T3(x)為增函數,T2(x)= T1(x)

①當k=2時,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{ }

∵T1(x),T3(x)為增函數,∴當 時,f(x)取得最小值,此時x=

, , ,f(44)<f(45)

∴x=44時,完成訂單任務的時間最短,時間最短為

②當k≥3時,T2(x)<T1(x),

,為增函數,φ(x)=max{T1(x),T(x)}

f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{ }

∵T1(x)為減函數,T(x)為增函數,∴當 時,φ(x)取得最小值,此時x=

, ,

∴完成訂單任務的時間大于

③當k<2時,k=1,f(x)=max{T2(x),T3(x)}=max{ }

∵T2(x)為減函數,T3(x)為增函數,∴當 時,φ(x)取得最小值,此時x=

類似①的討論,此時完成訂單任務的時間為 ,大于

綜上所述,當k=2時,完成訂單任務的時間最短,此時,生產A,B,C三種部件的人數分別為44,88,68.


【解析】(1)設完成A,B,C三種部件生產需要的時間分別為T1(x),T2(x),T3(x),則可得 , ;(2)完成訂單任務的時間為f(x)=max{T1(x),T2(x),T3(x)},其定義域為 ,可得T1(x),T2(x)為減函數,T3(x)為增函數,T2(x)= T1(x),分類討論:①當k=2時,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{ },利用基本不等式求出完成訂單任務的最短時間;②當k≥3時,T2(x)<T1(x), ,為增函數,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{ },利用基本不等式求出完成訂單任務的最短時間;③當k<2時,k=1,f(x)=max{T2(x),T3(x)}=max{ },利用基本不等式求出完成訂單任務的最短時間,從而問題得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函數,求b的取值范圍;

(2)若f(x)在x=1處取得極值,且x[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個商場經銷某種商品,根據以往資料統(tǒng)計,每位顧客采用的分期付款次數的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場經銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經銷一件該商品的利潤.

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,線段的長度為,在線段上取兩個點使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形中的所有線段長的和為,現給出有關數列的四個命題:

①數列是等比贊列;

②數列是遞增數列;

③存在最小的正數使得對任意的正整數,都有;

④存在最大的正數,使得對任意的正整數,都有.

其中真命題的序號是__________. (請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.

(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)上的函數f(x),如果對于任意給定的等比數列{an},{f(an)}仍是等比數列,則稱f(x)為“保等比數列函數”.現有定義在(﹣∞,0)∪(0,+∞)上的如下函數:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數列函數”的f(x)的序號為(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設函數f(x)= +λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數,且ω∈( ,1)
(1)求函數f(x)的最小正周期;
(2)若y=f(x)的圖象經過點( ,0)求函數f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】五個人站成一排,求在下列條件下的不同排法種數:
(1)甲必須在排頭;
(2)甲、乙相鄰;
(3)甲不在排頭,并且乙不在排尾;
(4)其中甲、乙兩人自左向右從高到矮排列且互不相鄰

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, ,四邊形是邊長為的正方形,平面平面,若 分別是的中點.

(1)求證: 平面;

(2)求證:平面平面;

(3)求幾何體的體和.

查看答案和解析>>

同步練習冊答案