【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
科目:高中數(shù)學 來源: 題型:
【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若與成線性相關,則某天售出9箱水時,預計收入為多少元?
(2)甲乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和的分布列及數(shù)學期望;
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,ξ=0;當兩條棱平行時,ξ的值為兩條棱之間的距離;當兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),如下表所示.
一次性購物量 | 1至4件 | 5 至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(2)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為K(K為正整數(shù)).
(1)設生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時間;
(2)假設這三種部件的生產(chǎn)同時開工,試確定正整數(shù)K的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓有以下性質(zhì):
①過圓上一點的圓的切線方程是.
②若不在坐標軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即.
(1)類比上述有關結(jié)論,猜想過橢圓上一點的切線方程 (不要求證明);
(2)若過橢圓外一點(不在坐標軸上)作兩直線,與橢圓相切于兩點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個頂點為,且它的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓的方程;
(2)過點A且斜率為k的直線l與橢圓相交于A,B兩點,點M在橢圓上,且滿求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】首屆中國國際進口博覽會在2018年11月5日—10日在上海國家會展中心舉辦。會議期間,某公司欲采購東南亞某水果種植基地的水果,公司劉總經(jīng)理與該種植基地的負責人陳老板商定一次性采購一種水果的采購價(元/噸)與采購量(噸)之間的函數(shù)關系的圖象如圖中的折線所示(不包含端點,但包含端點).
(Ⅰ)求與之間的函數(shù)關系式;
(Ⅱ)已知該水果種植基地種植該水果的成本是2800元/噸,那么劉總經(jīng)理的采購量為多少時,該水果基地在這次買賣中所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com