如圖,在正△ABC中,點D、E分別在邊BC,AC上,且BD=
1
3
BC,CE=
1
3
CA,AD,BE相交于點P.求證:
(Ⅰ)四點P、D、C、E共圓;
(Ⅱ)AP⊥CP.
考點:圓內(nèi)接多邊形的性質(zhì)與判定
專題:直線與圓
分析:(I)由已知條件推導出△ABD≌△BCE,由此能證明四點P,D,C,E共圓.
(II)連結DE,由正弦定理知∠CED=90°,由四點P,D,C,E共圓知,∠DPC=∠DEC,由此能證明AP⊥CP.
解答: 證明:(I)在△ABC中,由BD=
1
3
BC
,CE=
1
3
CA
,知:
△ABD≌△BCE,…(2分)
∴∠ADB=∠BEC,即∠ADC+∠BEC=π.
所以四點P,D,C,E共圓.…(5分)
(II)如圖,連結DE.
在△CDE中,CD=2CE,∠ACD=60°,
由正弦定理知∠CED=90°.…(8分)
由四點P,D,C,E共圓知,∠DPC=∠DEC,
所以AP⊥CP.…(10分)
點評:本題考查四點共圓的證明,考查異面直線垂直的證明,解題時要認真審題,注意正弦定理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

畫出函數(shù)y=x2-2|x|-1的圖象,并說明該圖象與y=x2-2x-1的圖象的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為1的正方形ABCD-A1B1C1D1中,M、N、P分別為A1B1、BB1、CC1的中點.
(1)證明D1M、C1B1、CN三線共點;
(2)求異面直線D1P與AM所成角度數(shù)并求CN與AM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在閉區(qū)間[-
π
4
π
4
]上的最大值和最小值.
(Ⅲ)求f(x)在閉區(qū)間[-
π
4
,
π
4
]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,直線l:y=-x+2
2
與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:
1-2a
x-2
<a(a>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(1)證明:AB∥平面SDC
(2)證明:SD⊥平面SAB
(3)求A點到平面SBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一只不透明的袋子中裝有顏色分別為紅、黃、藍、白的球各一個,這些球除顏色外都相同.
(1)求攪勻后從中任意摸出1個球,恰好是紅球的概率;
(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,求至少有一次摸出的球是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的3個紅球和3個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(Ⅰ)求取出的4個球中沒有紅球的概率;
(Ⅱ)求取出的4個球中恰有1個紅球的概率;
(Ⅲ)設ξ為取出的4個球中紅球的個數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案