【題目】已知函數(shù)的圖象由圖中的兩條射線和拋物線的一部分組成,求函數(shù)的解析式.
【答案】詳見解析.
【解析】試題分析: 題中給定的圖象是一個(gè)分段函數(shù)的圖象,當(dāng)時(shí),函數(shù)為一次函數(shù),設(shè)函數(shù)解析式為,將(1,1),(0,2)代入求解; 同理求出x>3時(shí)的解析式; 1≤x≤3時(shí),設(shè)函數(shù)的解析式為y=a(x-2)2+2(1≤x≤3,a<0), 將(1,1)代入求出a值;最后寫成分段函數(shù)的形式.
試題解析:題中給定的圖象實(shí)際上是一個(gè)分段函數(shù)的圖象,對(duì)各段對(duì)應(yīng)的函數(shù)解析式進(jìn)行求解時(shí),一定要注意其區(qū)間的端點(diǎn).
根據(jù)圖象,設(shè)左側(cè)的射線對(duì)應(yīng)的函數(shù)解析式為.
∵點(diǎn)(1,1),(0,2)在射線上,
∴,解得,
∴左側(cè)射線對(duì)應(yīng)的函數(shù)的解析式為y=-x+2(x<1).
同理,x>3時(shí),函數(shù)的解析式為y=x-2(x>3).
再設(shè)拋物線對(duì)應(yīng)的二次函數(shù)解析式為y=a(x-2)2+2(1≤x≤3,a<0).
∵點(diǎn)(1,1)在拋物線上,∴a+2=1,a=-1.
∴1≤x≤3時(shí),函數(shù)的解析式為y=-x2+4x-2(1≤x≤3).
綜上可知,函數(shù)的解析式為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)證明:函數(shù)是偶函數(shù);
(2)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖像(草圖),并寫出函數(shù)的值域;
(3)在同一坐標(biāo)系中畫出直線,觀察圖像寫出不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確的序號(hào)是__________________(寫出所有正確命題的序號(hào))
①函數(shù)的圖像恒過定點(diǎn);
②已知集合,則映射中滿足的映射共有1個(gè);
③若函數(shù)的值域?yàn)?/span>R,則實(shí)數(shù)的取值范圍是;
④函數(shù)的圖像關(guān)于對(duì)稱的函數(shù)解析式為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-1|+|x+1|(x∈R).
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖象;
(3)寫出函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】羅源濱海新城建一座橋,兩端的橋墩已建好,這兩墩相距米,余下工程只需建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測(cè),一個(gè)橋墩的工程費(fèi)用為32萬元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為萬元.
(1)試寫出關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)=96米,需新建多少個(gè)橋墩才能使余下工程的費(fèi)用最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生
表2:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考數(shù)據(jù)與公式:
K2=,其中n=a+b+c+d.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)的圖像在處的切線不過第四象限且不過原點(diǎn),求的取值范圍;
(Ⅱ)設(shè),若在上不單調(diào)且僅在處取得最大值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù) 的圖象在點(diǎn) 處的切線的傾斜角為 ,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù), 求的取值范圍;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com