甲乙兩個盒子里各放有標號為1,2,3,4的四個大小形狀完全相同的小球,從甲盒中任取一小球,記下號碼x后放入乙盒,再從乙盒中任取一小球,記下號碼y,設隨機變量X=|x-y|.
(1)求y=2的概率;
(2)求隨機變量X的分布列及數(shù)學期望.
考點:離散型隨機變量的期望與方差,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(1)由題意知y=2 包括兩種情況,一是x=2,y=2,一是x≠2,y=2,根據(jù)變量的結果對應的事件做出兩種情況的概率,這兩種情況是互斥的,且每一種情況中包含的事件是相互獨立事件,根據(jù)公式得到結果.
(2)由題意知隨機變量的取值是0、1、2、3,根據(jù)不同變量對應的事件得到概率,寫出分布列和期望.
解答: 解:(1)由題意知y=2 包括兩種情況:
一是x=2,y=2,一是x≠2,y=2,
∴P(y=2)=P(x=2,y=2)+P(x≠2,y=2)=
1
4
×
2
5
+
3
4
×
1
5
=
1
4

(2)隨機變量X可取的值為0,1,2,3
當X=0時,(x,y)=(1,1),(2,2),(3,3),(4,4)
∴P(x=0)=
1
4
×
2
5
+
1
4
×
2
5
+
1
4
×
2
5
+
1
4
×
2
5
=
2
5

當X=1時,(x,y)=(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)
∴P(X=1)=
1
4
×
1
5
+
1
4
×
1
5
+
1
4
×
1
5
+
1
4
×
1
5
+
1
4
×
1
5
+
1
4
×
1
5
=
3
10
,
同理,得P(X=2)=
1
5
,P(X=3)=
1
10
,
∴X的分布列:
 X 0 1 2 3
 P 
2
5
 
3
10
 
1
5
 
1
10
∴EX=
3
10
+2×
1
5
+3×
1
10
=1.
點評:本題考查離散型隨機變量的分布列和期望,這種類型是近幾年高考題中經常出現(xiàn)的,考查離散型隨機變量的分布列和期望,大型考試中理科考試必出的一道大題,文科考概率一般考查古典概型和幾何概型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若tanα=
1
3
,則
sinα+cosα
sinα-cosα
的值為(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐的三視圖如圖所示,其中側視圖為直角三角形,俯視圖為等腰直角三角形,則此三棱錐的體積等于( 。
A、
2
3
B、
3
3
C、
2
2
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐P-ABCD中,側面與底面ABCD所成的角為60°,E是PB的中點,求異面直線PD與AE所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

幾何特征與圓柱類似,底面為橢圓面的幾何體叫做“橢圓柱”.圖1所示的“橢圓柱”中,A′B′,AB和O′,O分別是上、下底面兩橢圓的長軸和中心,F(xiàn)1、F2是下底面橢圓的焦點.圖2是圖1“橢圓柱”的三視圖及其尺寸,其中俯視圖是長軸在一條水平線上的橢圓.

(Ⅰ)若M,N分別是上、下底面橢圓的短軸端點,且位于平面AA′B′B的兩側.
①求證:OM∥平面A′B′N;
②求平面ABN與平面A′B′N所成銳二面角的余弦值;
(Ⅱ)若點N是下底面橢圓上的動點,N′是點N在上底面的投影,且N′F1,N′F2與下底面所成的角分別為α、β,請先直觀判斷tan(α+β)的取值范圍,再嘗試證明你所給出的直觀判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,點E在線段PB上,且PE=
1
3
PB.
(Ⅰ)求證:AP⊥BM
(Ⅱ)求二面角E-AM-P的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=29,S10=S20,
(1)問這個數(shù)列的前多少項和最大?并求此最大值.
(2)求數(shù)列{|an|}的前n項和Tn公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系與直角坐標系xOy有相同的長度單位,以坐標原點O為極點,以x軸的正半軸為極軸,已知曲線C的極坐標方程為
1
ρ2
=
cos2θ
4
+sin2θ.
(1)將曲線C的極坐標方程化為參數(shù)方程;
(2)已知曲線C上兩點A(ρ1,θ),B(ρ2,θ+
π
2
)(θ∈[0,π]),求△AOB面積的最小值及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了調查某廠數(shù)萬名工人獨立生產某種產品的能力,隨機抽查了m位工人某天獨立生產該產品的數(shù)量,產品數(shù)量的分組區(qū)間為[10,15),[15,20),[20,25),[25,30),[30,35),頻率分布直方圖如圖所示,已知獨立生產的產品數(shù)量在[20,25)之間的工人有6位.
(Ⅰ)求m的值;
(Ⅱ)工廠規(guī)定:若獨立生產產品數(shù)量當日不小于25,則該工人當選“生產之星”,若將這天獨立生產該產品數(shù)量的頻率視為概率,隨機從全廠工人中抽取3人,這3人中當日“生產之星”人數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案