【題目】已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(1)若a=﹣2,b=﹣3,求f(x)的單調(diào)區(qū)間;
(2)若b=0,且a>﹣2e2 , 求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:a=﹣2,b=﹣3時(shí),f(x)=﹣2lnx+x2﹣3x,定義域?yàn)椋?,+∞),

,

在(0,+∞)上,f′(2)=0,當(dāng)x∈(0,2)時(shí),f′(x)<0,當(dāng)x∈(2,+∞)時(shí),f′(x)>0,

所以函數(shù)f(x)的單調(diào)增區(qū)間為(2,+∞);單調(diào)減區(qū)間為(0,2);


(2)解:因?yàn)閎=0,所以f(x)=alnx+x2 ,

x∈[1,e],2x2+a∈[a+2,a+2e2],

(i) 若a≥﹣2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f'(x)=0),

故函數(shù)f(x)在[1,e]上是增函數(shù),

此時(shí)[f(x)]min=f(1)=1;

(ii)若﹣2e2<a<﹣2,a+2<0,a+2e2>0,

,x∈[1,e],

當(dāng) 時(shí),f'(x)=0,

當(dāng) 時(shí),f'(x)<0,此時(shí)f(x)是減函數(shù);

當(dāng) 時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).


(3)解:b=0,f(x)=alnx+x2不等式f(x)≤(a+2)x,

即alnx+x2≤(a+2)x可化為a(x﹣lnx)≥x2﹣2x.

因?yàn)閤∈[1,e],所以lnx≤1≤x且等號(hào)不能同時(shí)取,

所以lnx<x,即x﹣lnx>0,因而 (x∈[1,e]),

(x∈[1,e]),又 ,

當(dāng)x∈[1,e]時(shí),x﹣1≥0,lnx≤1,x+2﹣2lnx>0,

從而g'(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),所以g(x)在[1,e]上為增函數(shù),

故g(x)的最小值為g(1)=﹣1,所以實(shí)數(shù)a的取值范圍是[﹣1,+∞)


【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;(3)問(wèn)題轉(zhuǎn)化為 (x∈[1,e]),令 (x∈[1,e]),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(0,+∞)上的連續(xù)函數(shù)y=f(x)滿足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.則函數(shù)y=f(x)(
A.有極小值,無(wú)極大值
B.有極大值,無(wú)極小值
C.既有極小值又有極大值
D.既無(wú)極小值又無(wú)極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)寫(xiě)出函數(shù)的解析式;

(2)若直線與曲線有三個(gè)不同的交點(diǎn),求的取值范圍;

(3)若直線 與曲線內(nèi)有交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競(jìng)賽,由成績(jī)得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:

1)這名學(xué)生成績(jī)的眾數(shù)與中位數(shù);

2)這名學(xué)生的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為,,,乙協(xié)會(huì)編號(hào)為,丙協(xié)會(huì)編號(hào)分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.

(1)用所給編號(hào)列出所有可能抽取的結(jié)果;

(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來(lái)自同一協(xié)會(huì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:①若,則 ; ②若;③若,則; ④若,則,其中正確命題的序號(hào)是( )

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,某市政府計(jì)劃對(duì)居民用電采用階梯收費(fèi)的方法.為此,相關(guān)部分在該市隨機(jī)調(diào)查了戶居民六月份的用電量(單位:)和家庭收入(單位:萬(wàn)元),以了解這個(gè)城市家庭用電量的情況.

用電量數(shù)據(jù)如下:

.

對(duì)應(yīng)的家庭收入數(shù)據(jù)如下:

.

(Ⅰ)根據(jù)國(guó)家發(fā)改委的指示精神,該市計(jì)劃實(shí)施階階梯電價(jià),使的用戶在第一檔,電價(jià)為/;的用戶在第二檔,電價(jià)為/;的用戶在第三檔電價(jià)為/,試求出居民用電費(fèi)用與用電量間的函數(shù)關(guān)系;

(Ⅱ)以家庭收入為橫坐標(biāo),電量為縱坐標(biāo)作出散點(diǎn)圖(如圖),求關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù)).

(Ⅲ)小明家的月收入,按上述關(guān)系估計(jì)小明家月支出電費(fèi)多少元?

參考數(shù)據(jù):,,.

參考公式:一組相關(guān)數(shù)據(jù),,…,的回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為,,其中,為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為2的正方形,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案