精英家教網 > 高中數學 > 題目詳情
已知橢圓的中心在坐標原點,焦點在軸上,離心率為,橢圓的短軸端點和焦點所組成的四邊形周長等于8。
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求直線的方程。
解:(Ⅰ)由題意設橢圓的標準方程為 
∴橢圓的標準方程為 
(Ⅱ)當直線l與x軸垂直時,A,B分別為橢圓短軸的兩端點,顯然以A,B為直徑的圓不過橢圓C的右頂點,故直線l與x軸不垂直 
設直線l的方程為 
則由 
 
 
因為以AB為直徑的圓過橢圓C的右頂點D(2,0),
 
 
解得 
當k=1時,直線l過橢圓右頂點(2,0),不合題意,
所以k=7,故直線l的方程是
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

橢圓兩焦點為 , ,P在橢圓上,若 △的面積的最大值為12,則橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓E的下焦點為、上焦點為,其離心 率。過焦點F2且與軸不垂直的直線l交橢圓于AB兩點。
(1)求實數的值;  
(2)求DABOO為原點)面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知拋物線與橢圓交于A、B兩點,點F為拋物線
的焦點,若∠AFB=,則橢圓的離心率為                          
A、        B、        C、        D、

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

是橢圓上的一點,是焦點,且,則的面積為          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過橢圓()的左焦點軸的垂線交橢圓于點,為右焦點,若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知P是橢圓上的點,F1、F2分別是橢圓的左、右焦點,若,則的面積為( )
A.3B.2C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在軸上,離心率,過橢圓的右焦點且垂直于長軸的弦長為
(1)求橢圓的標準方程;
(2)為橢圓左頂點,為橢圓上異于的任意兩點,若,求證:直線過定點并求出定點坐標。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的焦點為,點在橢圓上的一點,且的等差中項,則該橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案