若函數(shù)y=
1
3
x3-x2
+1(0<x<2)的圖象上任意點處切線的傾斜角為α,則α的最小值是( 。
A、
π
6
B、
4
C、
π
4
D、
6
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:對函數(shù)求導(dǎo)y′=x2-2x=(x-1)2-1,由0<x<2可求導(dǎo)數(shù)的范圍,進(jìn)而可求傾斜角的范圍
解答: 解:y′=x2-2x=(x-1)2-1
∵0<x<2
∴當(dāng)x=1時,y′最小-1,當(dāng)x=0或2時,y′=0
∴-1<y′<0
即-1≤tanα<0
4
≤α<π即傾斜角的最小值
4

故選B.
點評:本題考查導(dǎo)數(shù)的幾何意義:導(dǎo)數(shù)在切點處的值是曲線的切線斜率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的頂點與原點重合,始邊與x軸的非負(fù)半軸重合,終邊上一點P(-1,-2),則sin2θ 等于(  )
A、-
4
5
B、-
3
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二階矩陣A=[
ab
cd
],矩陣A屬于特征值λ1=-1的一個特征向量為a1=[
1
-1
],屬于特征值λ2=4的一個特征向量為a1=[
3
2
].求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤3x≤27},B={x|x>2}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|a<x<2a-1},若C⊆A,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
px2+2
q-3x
是奇函數(shù),且f(2)=-
5
3
.則函數(shù)f(x)的解析式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入的x∈[0,1],則輸出的x的范圍是(  )
A、[1,3]
B、[3,7]
C、[7,15]
D、[15,31]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè) H1(X)=max{f(x),g(x)},max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值,記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( 。
A、a2-2a-16
B、a2+2a-16
C、16
D、-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lg
1-x
1+x
,且f(x)+f(y)=f(z),則z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,點D在線段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(1)求證:直線DE與平面ABC不平行;
(2)設(shè)平面ADC1與平面ABC所成的銳二面角為θ,若cosθ=
7
7
,求AA1的長.

查看答案和解析>>

同步練習(xí)冊答案