【題目】甲罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球;乙罐中有5個(gè)紅球,3個(gè)白球和2個(gè)黑球.先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件,下列的結(jié)論:
①P(B)= ;
②P(B|A1)= ;
③事件B與事件A1不相互獨(dú)立;
④A1 , A2 , A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因?yàn)樗cA1 , A2 , A3中哪一個(gè)發(fā)生有關(guān),
其中正確結(jié)論的序號(hào)為 . (把正確結(jié)論的序號(hào)都填上)
【答案】②③④
【解析】解:∵甲罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球;乙罐中有5個(gè)紅球,3個(gè)白球和2個(gè)黑球.
先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;
再從乙罐中隨機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件,
則P(B)= + + = ≠ ,故①⑤錯(cuò)誤;
②P(B|A1)= ,正確;
③事件B與事件A1不相互獨(dú)立,正確;
④A1 , A2 , A3是兩兩互斥的事件,正確;
所以答案是:②③④
【考點(diǎn)精析】通過靈活運(yùn)用概率的基本性質(zhì),掌握1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游景區(qū)的景點(diǎn)A處和B處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從A處出發(fā),以50m/min的速度勻速步行,30min后到達(dá)B處,在B處停留20min后,再乘坐纜車回到A處.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為150m/mm.
(1)求該游客離景點(diǎn)A的距離y(m)關(guān)于出發(fā)后的時(shí)間x(mm)的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)做出(1)中函數(shù)的圖象,并求該游客離景點(diǎn)A的距離不小于1000m的總時(shí)長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)積為,即.
(1)若數(shù)列為首項(xiàng)為2016,公比為的等比數(shù)列,
①求的表達(dá)式;②當(dāng)為何值時(shí), 取得最大值;
(2)當(dāng)時(shí),數(shù)列都有且成立,
求證: 為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知X是離散型隨機(jī)變量,P(X=1)= ,P(X=a)= ,E(X)= ,則D(2X﹣1)等于( )
A.
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,且其圖象關(guān)于直線x=0對(duì)稱,則( )
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,anan+1=2(Sn+1) ().
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,(,),求{bn}的前n項(xiàng)和Tn;
(3)若數(shù)列{cn}滿足,(,),試問是否存在正整數(shù)p,q(其中1 < p < q),使c1,cp,cq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或下滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p> ),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為 .
(1)求p的值;
(2)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ ax2 , 且關(guān)于x的方程f(x)+a=0有三個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣ )∪(0, )
B.(﹣ ,0)∪( ,+∞)
C.(﹣ , )
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是BC的中點(diǎn).
(1)若E為B1C1的中點(diǎn),求證:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求證:平面AC1D⊥平面B1BCC1 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com