精英家教網 > 高中數學 > 題目詳情
已知點M(
3
,0),橢圓
x2
4
+y2=1與直線y=k(x+
3
)交于點A、B,則△ABM的周長為(  )
A.4B.8C.12D.16
直線y=k(x+
3
)
過定點N(-
3
,0)
,
由題設知M、N是橢圓的焦點,由橢圓定義知:AN+AM=2a=4,BM+BN=2a=4.
△ABM的周長為AB+BM+AM=(AN+BN)+BM+AM=(AN+AM)+(BN+BM)=8,
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

過點M(2,0)的直線l與拋物線y2=x交于A,B兩點,則
OA
OB
的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,長軸長為4
5
,直線l:y=x+m交橢圓于不同的兩點A,B.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)若直線l不經過橢圓上的點M(4,1),求證:直線MA,MB的斜率互為相反數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
4
+y2=1
,過點M(-1,0)作直線l交橢圓于A,B兩點,O是坐標原點.
(1)求AB中點P的軌跡方程;
(2)求△OAB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線l與雙曲線
x2
2
-y2=1
的同一支相交于A,B兩點,線段AB的中點在直線y=2x上,則直線AB的斜率為( 。
A.4B.2C.
1
2
D.
1
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C的方程為x2=2py(p>0),焦點F為(0,1),點P(x1,y1)是拋物線上的任意一點,過點P作拋物線的切線交拋物線的準線l于點A(s,t).
(1)求拋物線C的標準方程;
(2)若x1∈[1,4],求s的取值范圍.
(3)過點A作拋物線C的另一條切線AQ,其中Q(x2,y2)為切點,試問直線PQ是否恒過定點,若是,求出定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過點A(0,2)可以作 ______條直線與雙曲線x2-
y2
4
=1
有且只有一個公共點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若橢圓E1
x2
a21
+
y2
b21
=1
和橢圓E2
x2
a22
+
y2
b22
=1
滿足
a2
a1
=
b2
b1
=m(m>0)
,則稱這兩個橢圓相似,m是相似比.
(Ⅰ)求過(2,
6
)
且與橢圓
x2
4
+
y2
2
=1
相似的橢圓的方程;
(Ⅱ)設過原點的一條射線l分別與(Ⅰ)中的兩橢圓交于A、B兩點(點A在線段OB上).
①若P是線段AB上的一點,若|OA|,|OP|,|OB|成等比數列,求P點的軌跡方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2).設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.

查看答案和解析>>

同步練習冊答案