【題目】已知函數(shù), .
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出, 的值;若不存在,說明理由.
【答案】(1)(2)見解析
【解析】試題分析:(1)根據(jù)二次函數(shù)圖像確定對(duì)稱軸一定在區(qū)間外,再根據(jù)左右位置對(duì)于單調(diào)性確定函數(shù)值的正負(fù),解不等式可得實(shí)數(shù)的取值范圍;(2)根據(jù)對(duì)稱軸與定義區(qū)間位置關(guān)系討論函數(shù)值對(duì)應(yīng)關(guān)系,消去m得關(guān)于a,b關(guān)系式,根據(jù)整數(shù)條件確定有限解,最后驗(yàn)證確定滿足條件的解
試題解析:(1)令,則.
當(dāng),即時(shí), 恒成立,
所以.
因?yàn)?/span>在上是減函數(shù),所以,解得,
所以.
由,解得或,
當(dāng)時(shí), 的圖象對(duì)稱軸,且方程的兩根均為正,
此時(shí)在為減函數(shù),所以符合條件.
當(dāng)時(shí), 的圖象對(duì)稱軸,且方程的根一正一負(fù),
要使在單調(diào)遞減,則,解得.
綜上可得,實(shí)數(shù)的取值范圍為.
(2)假設(shè)存在整數(shù)、,使的解集恰好是,則
①若函數(shù)在上單調(diào)遞增,則, 且,
即
作差得到,代回得到,即,
由于、均為整數(shù),
故, , 或, , ,經(jīng)檢驗(yàn)均不滿足要求;
②若函數(shù)在上單調(diào)遞減,則, 且,
即
作差得到,代回得到: ,即,
由于、均為整數(shù),
故, , 或, , ,經(jīng)檢驗(yàn)均不滿足要求;
③若函數(shù)在上不單調(diào),則, ,且,
即
作差得到,代回得到,即,由于, 均為整數(shù),
故, , 或, , ,經(jīng)檢驗(yàn)均滿足要求;
綜上:符合要求的整數(shù)、是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)對(duì)任意的x、y∈R,滿足條件:f(x+y)=f(x)+f(y)﹣1,且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
(3)解關(guān)于t的不等式f(2t2﹣t)<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a,b∈M. (Ⅰ)證明:| a+ b|< ;
(Ⅱ)比較|1﹣4ab|與2|a﹣b|的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐中,底面是邊長(zhǎng)為1的正方形,側(cè)棱底面,且, 是側(cè)棱上的動(dòng)點(diǎn).
(1)求四棱錐的表面積;
(2)是否在棱上存在一點(diǎn),使得平面;若存在,指出點(diǎn)的位置,并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時(shí),恒有.當(dāng)時(shí), .
(Ⅰ)求證: 是奇函數(shù);
(Ⅱ)若,試求在區(qū)間上的最值;
(Ⅲ)是否存在,使對(duì)于任意恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(chǎng)(圓心為O)與此公路一邊所在直線l相切于點(diǎn)A.點(diǎn)P為北半圓。ɑPB)上的一點(diǎn),過P作直線l的垂線,垂足為Q.計(jì)劃在△PAQ內(nèi)(圖中陰影部分)進(jìn)行綠化.設(shè)△PAQ的面積為S(單位:m2).
(1)設(shè)∠BOP=α(rad),將S表示為α的函數(shù);
(2)確定點(diǎn)P的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)任意x∈[1,4],f(4x)≤g(x),求實(shí)數(shù)a的取值范圍;
(3)設(shè)a>﹣2,求函數(shù)h(x)=g(x)﹣f(x),x∈[1,2]的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com