【題目】某超市在2017年五一正式開(kāi)業(yè),開(kāi)業(yè)期間舉行開(kāi)業(yè)大酬賓活動(dòng),規(guī)定:一次購(gòu)買(mǎi)總額在區(qū)間內(nèi)者可以參與一次抽獎(jiǎng)根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)參與一次抽獎(jiǎng)的顧客每次購(gòu)買(mǎi)金額分布情況如下

1求參與一次抽獎(jiǎng)的顧客購(gòu)買(mǎi)金額的平均數(shù)與中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留到整數(shù));

2若根據(jù)超市的經(jīng)營(yíng)規(guī)律,購(gòu)買(mǎi)金額與平均利潤(rùn)有以下四組數(shù)據(jù)

試根據(jù)所給數(shù)據(jù)建立關(guān)于的線性回歸方程,并根據(jù)1)中計(jì)算的結(jié)果估計(jì)超市對(duì)每位顧客所得的利潤(rùn).

參考公式 , .

【答案】1見(jiàn)解析.2.20.45(元).

【解析】【試題分析】(1計(jì)算出每組的頻率,用每組中點(diǎn)值乘以頻率然后相加可得到平均數(shù)的估計(jì)值.中位數(shù)是使得左右兩邊頻率為的位置,先確定在第三組,然后利用小長(zhǎng)方形的面積計(jì)算出中位數(shù)的位置.2利用回歸直線方程公式,代入數(shù)據(jù)計(jì)算出回歸直線方程.

【試題解析】

1)由所給頻率分布直方圖可知,這5組數(shù)據(jù)的頻率分別為:0.1,0.2,0.3,0.25,0.15,故這組數(shù)據(jù)的平均數(shù)為:

;

.

∴這組數(shù)據(jù)的中位數(shù)為: .

2)由所給數(shù)據(jù)可得: ,

,∴回歸直線方程為: .

由此可以估計(jì)代入可得每位顧客貢獻(xiàn)給超市的平均利潤(rùn)為

(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為BF1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長(zhǎng)|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),試問(wèn)方程是否有實(shí)數(shù)根?若有,求出所有實(shí)數(shù)根;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與軸正半軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象,則下列敘述不正確的是( )

A. 的圖象關(guān)于點(diǎn)對(duì)稱 B. 的圖象關(guān)于直線對(duì)稱

C. 上是增函數(shù) D. 是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn).

(1)求橢圓方程;

(2)過(guò)點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, , , 是棱的中點(diǎn),且.

(Ⅰ)求證: 平面;

(Ⅱ)若為棱上一點(diǎn),滿足,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,離心率是,直線過(guò)點(diǎn)交橢圓于, 兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí), 的周長(zhǎng)為.

求橢圓的標(biāo)準(zhǔn)方程;

當(dāng)直線繞點(diǎn)運(yùn)動(dòng)時(shí),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直角坐標(biāo)系中動(dòng)點(diǎn),參數(shù),在以原點(diǎn)為極點(diǎn)、軸正半軸為極軸所建立的極坐標(biāo)系中,動(dòng)點(diǎn)在曲線 上.

(1)求點(diǎn)的軌跡的普通方程和曲線的直角坐標(biāo)方程;

(2)若動(dòng)點(diǎn)的軌跡和曲線有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

同步練習(xí)冊(cè)答案