若定義在R上的函數(shù)y=f(x)有反函數(shù),則函數(shù)y=f(x+a)+b的圖象與y=f-1(x+a)+b的圖象關(guān)于
 
對(duì)稱.
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于函數(shù)y=f(x)與其反函數(shù)y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱,利用平移變換即可得出.
解答: 解:∵函數(shù)y=f(x)與其反函數(shù)y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱,
∴函數(shù)y=f(x+a)+b的圖象與y=f-1(x+a)+b的圖象關(guān)于直線y=x+a+b對(duì)稱.
故答案為:y=x+a+b.
點(diǎn)評(píng):本題考查了互為反函數(shù)的圖象的對(duì)稱性、平移變換,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

作出函數(shù)f(x)=2|x|-x2的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只螞蟻從正方體ABCD-A1B1C1D1的頂點(diǎn)A處出發(fā),經(jīng)正方體的表面,按最短路線爬行到達(dá)頂點(diǎn)C1位置,則下列圖形中可以表示正方體及螞蟻?zhàn)疃膛佬新肪的正視圖是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
lg(x-2)
的定義域?yàn)?div id="m33dx6v" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|k•360°+60°<x<k•360°+300°,k∈Z},B={x|k•360°-210°<x<k•360°,k∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,稱
2ab
a+b
為a,b的調(diào)和平均數(shù),
a2+b2
2
為a,b的加權(quán)平均數(shù).如圖,C為線段AB上的點(diǎn),記AC=a,CB=b,O為AB中點(diǎn),以AB為直徑作半圓.過點(diǎn)C作AB的垂線交半圓于D,連結(jié)OD,AD,BD.作CE⊥OD,垂足為E,過點(diǎn)O作AB的垂線交半圓于點(diǎn)F,連接CF.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段
 
的長度是a,b的調(diào)和平均數(shù),線段
 
的長度是a,b的加權(quán)平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線M上動(dòng)點(diǎn)N滿足到點(diǎn)F(0,
5
4
)的距離等于到定直線y=
3
4
的距離,又過點(diǎn)P(1,3)的直線交此曲線于A,B兩點(diǎn),過A,B分別做曲線M的兩切線l1,l2
(1)求此曲線M的方程;
(2)當(dāng)過點(diǎn)P(1,3)的直線變化時(shí),證明l1,l2的交點(diǎn)過定直線;
(3)設(shè)l1,l2的交點(diǎn)為C,求三角形ABC面積的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4
x
與g(x)=x3+t,若f(x)與g(x)的交點(diǎn)在直線y=x的兩側(cè),則實(shí)數(shù)t的取值范圍是( 。
A、(-6,0]
B、(-6,6)
C、(4,+∞)
D、(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x2+x-4
(1)當(dāng)x∈[-2,2]時(shí),求f(x)的值域;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)求f(x)在區(qū)間[-2,t](t>-2)上的最小值g(t).

查看答案和解析>>

同步練習(xí)冊(cè)答案