已知函數(shù)f(x)=m+log2x2的定義域是[-2,-1],且f(x)≤4恒成立,則實數(shù)m的取值范圍是(  )
A、(-∞,4]
B、[2,+∞)
C、(-∞,2]
D、[4,+∞)
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可求得m≤m+log2x2≤2+m,從而化題意為2+m≤4.
解答: 解:∵-2≤x≤-1,
∴1≤x2≤4,
∴0≤log2x2≤2,
∴m≤m+log2x2≤2+m,
則函數(shù)f(x)=m+log2x2的定義域是[-2,-1],且f(x)≤4恒成立可化為
2+m≤4,
解得,m≤2,
故選C.
點評:本題考查了函數(shù)的值域的求法及恒成立問題的轉(zhuǎn)化,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1-x
ax
+lnx(a為正實數(shù)).
(1)若函數(shù)f(x)在[1,x)上為增函數(shù),求a的取值范圍;
(2)當(dāng)a=1時,求函數(shù)f(x)在[
1
e
,e]上的最大值與最小值;
(3)當(dāng)a=1時,求證:對于大于1的任意正整數(shù)n,都有l(wèi)nn>
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,a1=2,且3an+1+2Sn=3(n∈N*),記S=a1+a2+…+an+…,則S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
6
x-lnx,若x0是函數(shù)f(x)的零點,且0<x1<x0,則f(x1)的值( 。
A、恒為正數(shù)B、等于0
C、恒為負(fù)數(shù)D、不能確定正負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為x2+4y2=16,若P是橢圓上一點,且|PF1|=7,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式(kx-k2-4)(x-4)>0,其中k∈R.
(1)當(dāng)k=1時,求不等式的解集;
(2)當(dāng)k變化時,試求不等式的解集A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<0,b<0,則p=
b2
a
+
a2
b
與q=a+b的大小關(guān)系為( 。
A、p<qB、p≤q
C、p>qD、p≥q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(-A<b<0)的三個相鄰交點的橫坐標(biāo)分別是1,3,9,則f(m)=A的最小正數(shù)m為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-4)2+(y-2)2=9與圓x2+(y+1)2=4的位置關(guān)系為( 。
A、相交B、內(nèi)切C、外切D、外離

查看答案和解析>>

同步練習(xí)冊答案