【題目】用另一種方法表示下列集合.
(1){x||x|≤2,x∈Z};
(2){能被3整除,且小于10的正數(shù)};
(3)坐標平面內在第四象限的點組成的集合.
(4){(x,y)|x+y=6,x,y均為正整數(shù)};
(5){-3,-1,1,3,5}.
(6)被3除余2的正整數(shù)集合.
【答案】(1){-2,-1,0,1,2} (2){3,6,9}
(3)
(4){(1,5),(2,4),(3,3),(4,2),(5,1)}
(5){x|x=2k-1,-1≤k≤3,k∈Z}
(6){x|x=3n+2,n∈N}
【解析】試題分析:(1)用列舉法表示;(2)用列舉法;(3)描述法寫出;(4)用列舉法列舉出元素即可;(5)部分奇數(shù)構成的集合,用描述法寫出;(6)描述法寫出 .
試題解析:
(1){-2,-1,0,1,2} (2){3,6,9}
(3)
(4){(1,5),(2,4),(3,3),(4,2),(5,1)}
(5){x|x=2k-1,-1≤k≤3,k∈Z}
(6){x|x=3n+2,n∈N}
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)為定義在R上的奇函數(shù).如圖是函數(shù)圖象的一部分,當0≤x≤2時,是線段OA;當x>2時,圖象是頂點為P(3,4)的拋物線的一部分.
(1)在圖中的直角坐標系中畫出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)在[2,+∞)上的解析式;
(3)寫出函數(shù)f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度x的一次函數(shù).
①當時,求函數(shù)的表達式.
②當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的反函數(shù)為, .
(1)求的解析式,并指出的定義域;
(2)判斷的奇偶性,并說明理由;
(3)設,解關于的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在x = 2處的切線與直線垂直.
(Ⅰ)求函數(shù)f (x)的單調區(qū)間;
(Ⅱ)若存在,使成立,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量t與y進行相關性檢驗,得知t與y之間具有線性相關關系.
(1)求y關于t的線性回歸方程;
(2)預測該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關,某數(shù)學興趣小組為了驗證此結論,從全體組員中按分層抽樣的方法抽取50名同學(男生30人、女生20人),給每位同學立體幾何題、代數(shù)題各一道,讓各位同學自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關?
(2)經統(tǒng)計得,選擇做立體幾何題的學生正答率為,且答對的學生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示轉盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com