【題目】已知函數(shù)在x = 2處的切線與直線垂直.
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)若存在,使成立,求m的最小值.
【答案】(Ⅰ)函數(shù)f (x)的單調(diào)遞減區(qū)間是(0,1],單調(diào)遞增區(qū)間是[1,+∞);(Ⅱ)m的最小值是5.
【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(2)的值,求出a,從而求出函數(shù)的單調(diào)區(qū)間;
(2)問題等價于當(dāng)x∈(1,+∞)時,成立,設(shè),根據(jù)函數(shù)的單調(diào)性判斷即可.
試題解析:
(Ⅰ)
由已知,,解得:a = 1
∴
當(dāng)時,,f (x)是減函數(shù)
當(dāng)時,,f (x)是增函數(shù)
∴函數(shù)f (x)的單調(diào)遞減區(qū)間是(0,1],單調(diào)遞增區(qū)間是[1,+∞).
(Ⅱ)解:∵,∴等價于
即存在,使成立,∴
設(shè),則
設(shè),則
∴h (x)在上單調(diào)遞增.
又h (3) < 0,h (4) > 0,∴h (x)在上有唯一零點,設(shè)為x0,則,且
又,∴m的最小值是5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動點.
(1)試確定點M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)從中隨機抽取100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.
(Ⅰ)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值;
(Ⅱ)已知,求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義在上的奇函數(shù), 的最大值為.
(1)求函數(shù)的解析式;
(2)關(guān)于的方程在上有解,求實數(shù)的取值范圍;
(3)若存在,不等式成立,請同學(xué)們探究實數(shù)的所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第屆夏季奧林匹克運動會將于 2016 年 8 月 5 日—21 日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)( 單位: 枚).
第屆倫敦 | 第屆 北京 | 第屆雅典 | 第屆悉尼 | 第屆亞特蘭大 | |
中國 | |||||
俄羅斯 |
(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖, 并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度( 不要求計算出具體數(shù)值, 給出結(jié)論即可);
(2)甲、 乙、 丙三人競猜今年中國代表團和俄羅斯代表團中的哪一個獲得的金牌數(shù)多( 假設(shè)兩國代表團獲得的金牌數(shù)不會相等) , 規(guī)定甲、 乙、 丙必須在兩個代表團中選一個, 已知甲、 乙猜中國代表團的概率都為, 丙猜中國代表團的概率為 , 三人各自猜哪個代表團的結(jié)果互不影響.現(xiàn)讓甲、 乙、 丙各猜一次, 設(shè)三人中猜中國代表團的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用另一種方法表示下列集合.
(1){x||x|≤2,x∈Z};
(2){能被3整除,且小于10的正數(shù)};
(3)坐標(biāo)平面內(nèi)在第四象限的點組成的集合.
(4){(x,y)|x+y=6,x,y均為正整數(shù)};
(5){-3,-1,1,3,5}.
(6)被3除余2的正整數(shù)集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)=log (-x+1).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<-1,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個不同的零點.
(Ⅰ)求的取值范圍;
(Ⅱ)記兩個零點分別為,且,已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com