4.已知不等式|x+3|-2x-1<0的解集為(x0,+∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x-m|+|x+$\frac{1}{m}$|-x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

分析 (Ⅰ)不等式轉(zhuǎn)化為$\left\{\begin{array}{l}{x≤-3}\\{-(x+3)-2x-1<0}\end{array}\right.$或$\left\{\begin{array}{l}{x>-3}\\{x+3-2x-1<0}\end{array}\right.$,解得x>2,即可求x0的值;
(Ⅱ)由題意,等價(jià)于|x-m|+|x+$\frac{1}{m}$|=2(m>0)有解,結(jié)合基本不等式,即可求實(shí)數(shù)m的值.

解答 解:(Ⅰ)不等式轉(zhuǎn)化為$\left\{\begin{array}{l}{x≤-3}\\{-(x+3)-2x-1<0}\end{array}\right.$或$\left\{\begin{array}{l}{x>-3}\\{x+3-2x-1<0}\end{array}\right.$,
解得x>2,∴x0=2;
(Ⅱ)由題意,等價(jià)于|x-m|+|x+$\frac{1}{m}$|=2(m>0)有解,
∵|x-m|+|x+$\frac{1}{m}$|≥m+$\frac{1}{m}$,當(dāng)且僅當(dāng)(x-m)(x+$\frac{1}{m}$)≤0時(shí)取等號,
∵|x-m|+|x+$\frac{1}{m}$|=2(m>0)有解,
∴m+$\frac{1}{m}$≤2,
∵m+$\frac{1}{m}$≥2,
∴m+$\frac{1}{m}$=2,∴m=1.

點(diǎn)評 本題考查不等式的解法,考查絕對值不等式,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從5名男同學(xué),4名女同學(xué)中任選5人參加一次夏令營,其中男同學(xué),女同學(xué)均不少于2人的概率是( 。
A.$\frac{13}{63}$B.$\frac{50}{63}$C.$\frac{43}{63}$D.$\frac{11}{63}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=|x|-$\sqrt{x+1}$的值域是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|a-2≤x≤2a+3,x∈R},B={x|x2-6x+5≤0}.
(1)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(2)若A∩∁UB=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:θ為第一象限角,$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{sinθ+3cosθ}{sinθ-cosθ}$的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=1,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知某三棱錐的三視圖如圖所示,則該三棱錐的體積為$\frac{2}{3}$,它的表面積為$2+2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|lnx|,設(shè)x1≠x2且f(x1)=f(x2).
(1)求$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)若x1+x2+f(x1)+f(x2)>M對任意滿足條件的x1,x2恒成立,求實(shí)數(shù)M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F在x軸上,上頂點(diǎn)到右頂點(diǎn)的距離為$\sqrt{7}$,且短軸長是焦距的$\sqrt{3}$倍.
(1)求橢圓C的方程;
(2)設(shè)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過橢圓C的右焦點(diǎn)作直線l∥AB并交橢圓C于M、N兩點(diǎn),是否存在常數(shù)λ,使得|AB|2=λ|MN|?若存在,請求出λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過點(diǎn)A(3,5)作圓(x-2)2+(y-3)2=1的切線,則切線的方程為(  )
A.x=3或3x+4y-29=0B.y=3或3x+4y-29=0C.x=3或3x-4y+11=0D.y=3或3x-4y+11=0

查看答案和解析>>

同步練習(xí)冊答案