把邊長(zhǎng)為1的正方形ABCD如圖放置,A、D別在x軸、y軸的非負(fù)半軸上滑動(dòng).
(1)當(dāng)A點(diǎn)與原點(diǎn)重合時(shí),
OB
OC
=
 

(2)
OB
OC
的最大值是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:(1)求出B,C的坐標(biāo),以及向量OB,OC的坐標(biāo),再由數(shù)量積的坐標(biāo)公式即可得到;
(2)令∠OAD=θ,由邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A、D分別在x軸、y軸正半軸上,可得出B,C的坐標(biāo),由此可以表示出兩個(gè)向量,算出它們的內(nèi)積.
解答: 解:(1)當(dāng)A點(diǎn)與原點(diǎn)重合時(shí),B在x軸上,B(1,0),C(1,1),
OB
OC
=(1,0)•(1,1)=1;
(2)如圖令∠OAD=θ,由于AD=1故0A=cosθ,OD=sinθ,
如圖∠BAX=
π
2
-θ,AB=1,
故xB=cosθ+cos(
π
2
-θ)=cosθ+sinθ,yB=sin(
π
2
-θ)=cosθ,
OB
=(cosθ+sinθ,cosθ)
同理可求得C(sinθ,cosθ+sinθ),即
OC
=(sinθ,cosθ+sinθ),
OB
OC
=(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=1+sin2θ,
當(dāng)θ=45°時(shí),sin2θ取最大1,則
OB
OC
的最大值是2.
故答案為:1,2
點(diǎn)評(píng):本題考查平面向量及運(yùn)用,考查向量的數(shù)量積的坐標(biāo)運(yùn)算,同時(shí)考查三角函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙等6人按下列要求占成一排,分別有多少種不同站法?
(1)甲乙不相鄰;
(2)甲乙之間恰好相隔兩人;
(3)甲不站在最左邊,乙不站在最右邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B、C、D、E五人并排站成一排,若A,B必須相鄰,那么不同的排法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是( 。
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(ωx+1)(ω>0)的對(duì)稱軸方程為x=1,則ω的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x+m•2x+1有且只有一個(gè)零點(diǎn).
(1)求m的取值范圍;
(2)求該零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|2x-1|≤3的解集恰為不等式ax2+bx+1≥0的解集,則a+b=(  )
A、0B、2C、-2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=2x,總有(  )
A、f(
x1+x2
2
)=
f(x1)+f(x2)
2
B、f(
x1+x2
2
)≠
f(x1)+f(x2)
2
C、f(
x1+x2
2
)≤
f(x1)+f(x2)
2
D、f(
x1+x2
2
)≥
f(x1)+f(x2)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx-lnx,a,b∈R.
(1)當(dāng)a=b=1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)若a<0且b=2-a,試討論f(x)的單調(diào)性;
(3)若對(duì)任意的b∈[-2,-1],均存在x∈(1,e)使得函數(shù)y=f(x)圖象上的點(diǎn)落在
1<x<e
y<0
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案