(文)如圖,四棱錐P-ABCD的底面ABCD是圓內(nèi)接四邊形(記此圓為W),且PA⊥平面ABCD.
(1)當(dāng)AC是圓W的直徑時(shí),求證:平面PBC⊥平面PAB;
(2)當(dāng)BD是圓W的直徑時(shí),PA=BD=2,AD=CD=
3
,求四棱錐P-ABCD的體積;
(3)在(2)的條件下,證明:直線AB不可能與平面PCD平行.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,平面與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)應(yīng)用面面垂直的判定定理,證得BC⊥平面PAB即可;
(2)求出S△ABD=S△BCD=
3
2
,即可求出四棱錐P-ABCD的體積;
(3)利用反證法進(jìn)行證明即可.
解答: (1)證明:∵AC是圓的直徑,∴AB⊥CB,
∵PA⊥平面ABCD,∴PA⊥BC,
∴BC⊥平面PAB,
又BC?平面PBC,
∴平面PBC⊥平面PAB;
(2)解:∵BD是圓W的直徑時(shí),BD=2,AD=CD=
3
,
∴AB=BC=1,
∴S△ABD=S△BCD=
3
2

∵PA=2,
∴四棱錐P-ABCD的體積為
1
3
3
•2
=
2
3
3
;
(3)證明:假設(shè)直線AB與平面PCD平行,則AB∥CD,
由(2)知∠ABC=30°,∠CDB=60°,
∴AB與CD不平行,
∴直線AB不可能與平面PCD平行.
點(diǎn)評(píng):本題主要考查空間直線與平面的位置關(guān)系,考查面面垂直、線面平行的判定與性質(zhì),同時(shí)考查四棱錐P-ABCD的體積的求法,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,已知a1=1,且S1,S2,S4成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
1
anan+1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0).
(1)若f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求f(x)在[
1
2
,2]上的最小值h(a)的表達(dá)式;
(3)當(dāng)a=1時(shí),求證:當(dāng)n∈N*,n>1時(shí)都有l(wèi)nx>
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,M,N分別是BC和PD的中點(diǎn).
(Ⅰ)證明:MN∥平面PAB;
(Ⅱ)證明:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x+y)+f(x-y)=2f(x)f(y),且f(1)≠f(2),求證:函數(shù)f(x)在定義域上是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),已知它的一條對(duì)稱軸是直線x=
π
8

(1)求函數(shù)f(x)的遞減區(qū)間和對(duì)稱中心;
(2)求函數(shù)f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1中,M,N,P,Q分別是棱B1C1,C1D1,D1A1,BC的中點(diǎn),則異面直線MN與PQ所成的角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+b,x∈(-1,3),f(x)≤0恒成立,則2a+b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
1
x
-2(x<0),則f(x)有最
 
值為
 
,此時(shí)x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案