【題目】某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入.政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足.設甲合作社的投入為(單位:萬元),兩個合作社的總收益為(單位:萬元).
(1)若兩個合作社的投入相等,求總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當a=1時,寫出的單調遞增區(qū)間(不需寫出推證過程);
(Ⅱ)當x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點,記,求的最大值;
(Ⅲ)若關于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對數(shù)函數(shù)(且)和指數(shù)函數(shù)(且)互為反函數(shù).已知函數(shù),其反函數(shù)為.
(1)若函數(shù)定義域為,求實數(shù)的取值范圍.
(2)若為定義在上的奇函數(shù),且時,.求的解析式.
(3)定義在上的函數(shù),如果滿足:對任意的,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中為函數(shù)的上界.若函數(shù),當時,探究函數(shù)在上是否存在上界,若存在求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,是的中點.
(1)求證:平面;
(2)求證:平面平面.(只需在下面橫線上填寫給出的如下結論的序號:①平面,②平面,③,④,⑤)
證明:(1)設,連接.因為底面是正方形,所以為的中點,又是的中點,所以_________.因為平面,____________,所以平面.
(2)因為平面平面,所以___________,因為底面是正方形,所以_______,又因為平面平面,所以_________.又平面,所以平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f (x) = x ex (xR)
(Ⅰ)求函數(shù) f (x)的單調區(qū)間和極值;
(Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);
(Ⅲ)若x1 (0, 1), x2(1, +∞), 且 f (x1) = f (x2), 求證: x1 + x2 > 2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, , ),是自然對數(shù)的底數(shù).
(Ⅰ)當, 時,求函數(shù)的零點個數(shù);
(Ⅱ)若,求在上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com