【題目】橢圓C: 的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使得在上的最大值為,若存在,求滿足條件的a的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)、分別在、上運(yùn)動,若的最小值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.
(1)求橢圓的方程;
(2)過點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,是的中點(diǎn),是線段上一個動點(diǎn),且,如圖所示,沿將翻折至,使得平面平面.
(1)當(dāng)時,證明:平面;
(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F1到直線AB的距離為|OB|.
(1)求橢圓C的方程;
(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體中, , ,點(diǎn), , 分別為, , 的中點(diǎn),過點(diǎn)的平面與平面平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖中畫出這個幾何圖形(說明畫法,不需要說明理由);
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸正半軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個單位,得到函數(shù)的圖象,則下列敘述不正確的是( )
A. 的圖象關(guān)于點(diǎn)對稱 B. 的圖象關(guān)于直線對稱
C. 在上是增函數(shù) D. 是奇函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com