分析 (1)數(shù)列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$,可得nan=(n-1)an-1+1,即nan-(n-1)an-1=1,即可證明.
(2)由(1)可得:nan=2+(n-1),可得n2an=n(n+1),bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂項求和”方法與數(shù)列的單調(diào)性即可得出.
解答 證明:(1)∵數(shù)列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$,∴nan=(n-1)an-1+1,即nan-(n-1)an-1=1,
∴數(shù)列{nan}是等差數(shù)列,首項為2,公差為1.
(2)由(1)可得:nan=2+(n-1),可得n2an=n(n+1).∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴{bn}的前n項和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.
點評 本題考查了數(shù)列遞推關系、等差數(shù)列的定義與通項公式、“裂項求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,3] | B. | (-∞,1]∪[3,+∞) | C. | [2,5] | D. | (-∞,2]∪[5,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | $-\frac{3}{2}$ | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com