【題目】臨近開學季,某大學城附近的一款“網紅”書包銷售火爆,其成本是每件15元.經多數商家銷售經驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關系如下表所示:
時間(/天) | 1 | 4 | 7 | 11 | 28 | … |
日銷售量(/個) | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內,前15天每天的價格(元/個)與時間(天)的函數關系式為(且為整數),后15天每天的價格(元/個)與時間(天)的函數關系式為(且為整數).
(1)認真分析表格中的數據,用所學過的一次函數、反比例函數的知識確定一個滿足這些數據(個)與(天)的關系式;
(2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現,這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
【答案】(1)(2)第5天時的銷售利潤最大,最大值2025元.(3)
【解析】
(1)若選一次函數,則設為,代,求解,再代入其他點驗證是否符合題意,若選反比例函數,則設為,代,求解,再代入其他點驗證是否符合題意.
(2)設日銷售利潤為元,根據(1)的結果,分當,時,討論求解.
(3)建立函數模型,根據每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,因為,則由二次函數的性質,對稱軸應求解.
(1)若選一次函數,則設為,代,,
得,解得
所以,
代入中,符合題意;
若選反比例函數,則設為,代,,
得,解得,不合題意.
所以,與的函數關系式為
(2)設日銷售利潤為元,當時,
,
所以當時,有最大值2025元.
當時,,
因當時,隨的增大而減小,故當時,有最大值952元.
綜上所述,第5天時的銷售利潤最大,最大值2025元.
(3),
對稱軸為,因為,且為整數,隨的增大而增大,開口向下,
所以,所以,故.所以.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,曲線的參數方程為(為參數);以原點極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
⑴ 求曲線的普通方程與曲線的直角坐標方程;
⑵ 試判斷曲線與是否存在兩個交點,若存在求出兩交點間的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
(1)求橢圓C的方程;
(2)直線l交橢圓C于不同的兩點A、B,且中點E在直線上,線段的垂直平分線交y軸于點,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為認真貫徹落實黨中央國務院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調控政策的連續(xù)性和穩(wěn)定性,進一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺了相關文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區(qū)的房價均值數據:
(月份) | 2 | 3 | 4 | 5 | 6 |
(房價均價:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、具有線性相關關系,求房價均價(千元/平方米)關于月份的線性回歸方程;
(2)根據線性回歸方程預測該市某城區(qū)7月份的房價.
(參考公式:用最小二乘法求線性回歸方程的系數公式)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列敘述:
①正四面體的棱長為,是棱的中點,則異面直線與所成角的余弦值是;
②在等比數列中前項和為,前項和為,則前項和為;
③直線關于直線對稱的直線方程為;
④若,,且,則的最小值為;
其中所有正確敘述的序號是_____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.
(1)證明:平面;
(2)當直線與平面所成的角取最大值時,求二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】水是生命之源,為了引導市民科學用水,我國加快階梯水價推行,原則是“保基本、建機制、促節(jié)約”,其中“;”是指保證至少80%的居民用戶用水價格不變,“建機制”是制定合理的階梯用水價格某城市采用簡單隨機抽樣的方法從郊區(qū)和城區(qū)分別抽取5戶和20戶居民的年人均用水量(單位:噸)進行調研,抽取數據的莖葉圖如下:
(1)若在郊區(qū)的這5戶居民中隨機抽取2戶,求“被抽取的2戶年人均用水量的和超過60噸”的概率;
(2)若該城市郊區(qū)和城區(qū)的居民戶數比為1:5,現將年人均用水量不超過30噸的用戶定義為第一階梯用戶,只保證這一梯次的居民用戶用水價格不變,試根據樣本估計總體的思想分析此方案是否符合國家“;”政策.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,把邊長為4的正沿中位線折起使點到的位置.
(1)在棱上是否存在點,使得平面?若存在,確定的位置,若不存在,說明理由;
(2)若,求四棱錐的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com