【題目】水是生命之源,為了引導(dǎo)市民科學(xué)用水,我國(guó)加快階梯水價(jià)推行,原則是;、建機(jī)制、促節(jié)約,其中保基本是指保證至少80%的居民用戶用水價(jià)格不變,建機(jī)制是制定合理的階梯用水價(jià)格某城市采用簡(jiǎn)單隨機(jī)抽樣的方法從郊區(qū)和城區(qū)分別抽取5戶和20戶居民的年人均用水量(單位:噸)進(jìn)行調(diào)研,抽取數(shù)據(jù)的莖葉圖如下:

1)若在郊區(qū)的這5戶居民中隨機(jī)抽取2戶,求被抽取的2戶年人均用水量的和超過(guò)60的概率;

2)若該城市郊區(qū)和城區(qū)的居民戶數(shù)比為15,現(xiàn)將年人均用水量不超過(guò)30噸的用戶定義為第一階梯用戶,只保證這一梯次的居民用戶用水價(jià)格不變,試根據(jù)樣本估計(jì)總體的思想分析此方案是否符合國(guó)家;政策.

【答案】(1);(2)符合

【解析】

1)列舉出從5戶郊區(qū)居民主動(dòng)隨機(jī)抽取2戶,其年人均用水量構(gòu)成的所有基本事件,確定其中人均用水量的和超過(guò)60噸的事件數(shù),利用古典概型概率公式計(jì)算即可;(2)求出該城市年人均用水量不超過(guò)30噸的居民用戶的百分率,將其與80%比較即可判斷是否符合政策.

1)從5戶郊區(qū)居民主動(dòng)隨機(jī)抽取2戶,其年人均用水量構(gòu)成的所有基本事件是:

10件,其中人均用水量的和超過(guò)60噸包含2件,所以被抽取的2戶年人均用水量的和超過(guò)60噸的概率為;

2)設(shè)該城市郊區(qū)的居民用戶數(shù)為a,則城區(qū)的居民用戶數(shù)為5a,依題意,該城市人均用水量不超過(guò)30噸的居民用戶數(shù)的百分率為:,故此方案符合國(guó)家保基本政策.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中,GH分別為,上的點(diǎn),平面平面,,.

1)證明:平面平面;

2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】臨近開學(xué)季,某大學(xué)城附近的一款網(wǎng)紅書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗(yàn),這款書包在未來(lái)1個(gè)月(按30天計(jì)算)的日銷售量(個(gè))與時(shí)間(天)的關(guān)系如下表所示:

時(shí)間(/天)

1

4

7

11

28

日銷售量(/個(gè))

196

184

172

156

88

未來(lái)1個(gè)月內(nèi),前15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)).

1)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)(個(gè))與(天)的關(guān)系式;

2)試預(yù)測(cè)未來(lái)1個(gè)月中哪一天的日銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)在實(shí)際銷售的第1周(7天),商家決定每銷售1件商品就捐贈(zèng)元利潤(rùn)給該城區(qū)養(yǎng)老院.商家通過(guò)銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)前后,一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延.疫情就是命令,防控就是責(zé)任.在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,掀起了一場(chǎng)堅(jiān)決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭(zhēng).下圖表展示了214日至29日全國(guó)新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結(jié)論正確的是(

A.16天中每日新增確診病例數(shù)量呈下降趨勢(shì)且19日的降幅最大

B.16天中每日新增確診病例的中位數(shù)小于新增疑似病例的中位數(shù)

C.16天中新增確診、新增疑似、新增治愈病例的極差均大于2000

D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且焦距為4

1)求橢圓的標(biāo)準(zhǔn)方程:

2)設(shè)為直線上一點(diǎn),為橢圓上一點(diǎn).為直徑的圓恒過(guò)坐標(biāo)原點(diǎn).

(i)的取值范圍

(ii)是否存在圓心在原點(diǎn)的定圓恒與直線相切?若存在,求出該定圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是(  )

A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分條件

C.命題“若xy,則sin x=sin y”的逆否命題為真命題

D.命題“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的菱形中, ,點(diǎn)分別是的中點(diǎn), ,沿翻折到,連接,得到如圖的五棱錐,且

(1)求證: 平面(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:首項(xiàng)為且公比為正數(shù)的等比數(shù)列為數(shù)列”.

(Ⅰ)已知等比數(shù)列)滿足:,,判斷數(shù)列是否為數(shù)列;

(Ⅱ)設(shè)為正整數(shù),若存在數(shù)列 ),對(duì)任意不大于的正整數(shù),都有成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,過(guò)橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn),當(dāng)直線軸垂直時(shí),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)直線軸不垂直時(shí),在軸上是否存在一點(diǎn)(異于點(diǎn)),使軸上任意點(diǎn)到直線,的距離均相等?若存在,求點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案