【題目】(本題滿分分)設數(shù)列的前項和為,已知,,.
(1)求數(shù)列的通項公式;
(2)證明:對一切正整數(shù),有.
【答案】(1);(2)詳見解析.
【解析】
試題分析:(1)求數(shù)列的通項公式,由已知,即,這是已知與的關系,求,可用來解,本題也可以由,與,求出,猜想出數(shù)列的通項公式,再用數(shù)學歸納法證明;(2)證明:對一切正整數(shù),有,由(1)知,,故,可用放縮法來證.
試題解析:(1)(解法一) 依題意,又,所以 (2分)
當,
,
兩式相減得
整理得 ,即, (6分)
又,故數(shù)列是首項為1,公差為1的等差數(shù)列,
所以所以 (8分)
(解法二) , ,得, (2分)
猜想 (3分)
下面用數(shù)學歸納法證明:
(1)當時,猜想成立;
(2)假設當時,猜想也成立,即 (4分)
當時,
=
, (5分)
時,猜想也成立 (6分)
由(1),(2)知,對于,猜想成立.
,當,也滿足此式,故 (8分)
(2)證明:當; (9分)
當; (10分)
當, (12分)
此時
綜上,對一切正整數(shù)n,有 (14分)
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017山西三區(qū)八校二模】已知函數(shù)(其中, 為常數(shù)且)在處取得極值.
(Ⅰ)當時,求的單調區(qū)間;
(Ⅱ)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為備戰(zhàn)年瑞典乒乓球世界錦標賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進行隊內(nèi)單打對抗比賽,每兩人比賽一場,共賽三場,每場比賽勝者得分,負者得分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結果互不影響.若甲獲第一名且乙獲第三名的概率為.
(Ⅰ)求的值;
(Ⅱ)設在該次對抗比賽中,丙得分為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知集合A={1,a},B={1,2,3},則“a=3”是“AB”的充分不必要條件;
②“x<0”是“l(fā)n(x+1)<0”的必要不充分條件;
③“函數(shù)f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的充要條件;
④“平面向量 與 的夾角是鈍角”的充要條件的“ <0”.
其中正確命題的序號是(把所有正確命題的序號都寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標系xOy中,橢圓C:(a>b>0)的上頂點到焦點的距離為2,離心率為.
(1)求a,b的值.
(2)設P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點P的位置無關,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
如圖,2015年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,已知的身高約為米(將眼睛距地面的距離按米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿繞中點在與立柱所在的平面內(nèi)旋轉.攝影者有一視角范圍為的鏡頭,在彩桿轉動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某媒體對“男女延遲退休”這一公眾關注的問題進行了民意調查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認為對這一問題的看法與性別有關?
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
(2)從贊同“男女延遲退休”16人中選出3人進行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計整個地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設該網(wǎng)民是否購買這五種商品相互獨立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com