【題目】設x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實數(shù)a的取值范圍為( )
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]
【答案】B
【解析】解:由z=ax+y得y=﹣ax+z,直線y=﹣ax+z是斜率為﹣a,y軸上的截距為z的直線,作出不等式組對應的平面區(qū)域如圖:
則A(1,1),B(2,4),
∵z=ax+y的最大值為2a+4,最小值為a+1,
∴直線z=ax+y過點B時,取得最大值為2a+4,
經(jīng)過點A時取得最小值為a+1,
若a=0,則y=z,此時滿足條件,
若a>0,則目標函數(shù)斜率k=﹣a<0,
要使目標函數(shù)在A處取得最小值,在B處取得最大值,
則目標函數(shù)的斜率滿足﹣a≥kBC=﹣1,
即0<a≤1,
若a<0,則目標函數(shù)斜率k=﹣a>0,
要使目標函數(shù)在A處取得最小值,在B處取得最大值,
則目標函數(shù)的斜率滿足﹣a≤kAC=2,
即﹣2≤a<0,
綜上﹣2≤a≤1,
故選:B.
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合進行求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個單位有職工800人,期中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人.為了解職工收入情況,決定采用分層抽樣的方法,從中抽取容量為40的樣本.則從上述各層中依次抽取的人數(shù)分別是( )
A.12,24,15,9
B.9,12,12,7
C.8,15,12,5
D.8,16,10,6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算題
(1)已知cos( +x)= ,( <x< ),求 的值.
(2)若 , 是夾角60°的兩個單位向量,求 =2 + 與 =﹣3 +2 的夾角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,設向量 =(a, ), =(cosC,c﹣2b),且 ⊥ .
(Ⅰ)求角A的大。
(Ⅱ)若a=1,求△ABC的周長l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若把函數(shù)y=sin(ωx﹣ )的圖象向左平移 個單位,所得到的圖象與函數(shù)y=cosωx的圖象重合,則ω的一個可能取值是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)用定義法證明函數(shù)f(x)在R上是減函數(shù);
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com