【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PAPD的中點,

在此幾何體中,給出下面四個結論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】由題意畫出四棱錐P-ABCD如圖所示

E,F分別為PAPD的中點,

,。

,。

∴四邊形EFCB為梯形,所以直線BE與直線CF相交。故不正確。

結合圖形可得直線BE與直線AF異面,故正確。

平面PBC, 平面PBC,可得直線EF平面PBC正確。

對于④,如圖,假設平面BCEF⊥平面PAD。

過點PPOEF分別交EF、AD于點O、N,在BC上取一點M,連接PM、OMMN,

POOM,

PO=ON,

PM=MN

PMMN時,必然平面BCEF與平面PAD不垂直。故④不一定成立。

綜上只有②③正確。B。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標縮小到原來的 (縱坐標不變),再將所得到的圖象上所有點向左平移 個單位,所得函數(shù)圖象的解析式為(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x+
D.y=sin( x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知
(1)證明f(x)是R上的增函數(shù);
(2)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的中心為E(﹣1,0),一邊AB所在的直線方程為x+3y﹣5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知二面角α﹣MN﹣β的大小為60°,菱形ABCD在面β內,A、B兩點在棱MN上,∠BAD=60°,E是AB的中點,DO⊥面α,垂足為O.

(1)證明:AB⊥平面ODE;
(2)求異面直線BC與OD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160)、第二組[160,165);…第八組[190,195],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構成等差數(shù)列.

(1)估計這所學校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x、y,求滿足|x﹣y|≤5的事件概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設z,z2 , z﹣z2在復平面對應的點分別為A,B,C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意x1 , x2∈(0,+∞)都有 <0(x1≠x2),若實數(shù)a滿足f(log3a1)+2f( a)≥3f(1),則a的取值范圍是(
A.[ ,3]
B.[1,3]
C.(0,
D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓C過點A(6,4),B(1,﹣1),且圓心在直線l:x﹣5y+7=0上.
(1)求圓C的方程;
(2)P為圓C上的任意一點,定點Q(7,0),求線段PQ中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案