【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),

(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線任一點為,求點直線的距離的最大值.

【答案】(Ⅰ)直線的普通方程為,曲線的直角坐標(biāo)方程為;(Ⅱ) .

【解析】試題分析:(1)利用代入消參法得到直線的普通方程,利用得到曲線的直角坐標(biāo)方程;(2曲線經(jīng)過伸縮變換得到曲線,利用點到直線距離公式得到點直線的距離,進而求出最大值.

試題解析:

(Ⅰ)直線的普通方程為

故曲線的直角坐標(biāo)方程為,

(Ⅱ)由(Ⅰ)得,經(jīng)過伸縮變換得到曲線的方程為,所以曲線的方程,可以令 (是參數(shù)),根據(jù)點到直線的距離公式可得

,

故點到直線的距離的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,△PCD為等邊三角形,平面PAC⊥平面PCD,PACDCD=2,AD=3.

1)設(shè)GH分別為PBAC的中點,求證:GH//平面PAD;

2)求證:⊥平面PCD

3)求直線AD與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請畫出上表數(shù)據(jù)的散點圖;并指出xy 是否線性相關(guān);

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐的一條棱長為,其余棱長均為2,當(dāng)三棱錐的體積最大時, 它的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點.

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,,并整理得到頻率分布直方圖:

估計使用這種理財工具的人員年齡的中位數(shù)、平均數(shù);

采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中各抽取多少人?

中抽取的8人中,隨機抽取2人,則第三組至少有1個人被抽到的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個定點的距離之比為定值的點所形成的圖形是圓.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系中,,,點滿足.設(shè)點所構(gòu)成的曲線為,下列結(jié)論正確的是( )

A.的方程為

B.上存在點,使得到點的距離為

C.上存在點,使得

D.上存在點,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場親子游樂場由于經(jīng)營管理不善突然倒閉.在進行資產(chǎn)清算時發(fā)現(xiàn)有3000名客戶辦理的充值會員卡上還有余額.為了了解客戶充值卡上的余額情況,從中抽取了300名客戶的充值卡余額進行統(tǒng)計.其中余額分組區(qū)間為,,,其頻率分布直方圖如圖所示,請你解答下列問題:

(1)求的值;

(2)求余額不低于元的客戶大約為多少人?

(3)根據(jù)頻率分布直方圖,估計客戶人均損失多少?(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

同步練習(xí)冊答案