設(shè)函數(shù),曲線通過點(diǎn)(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時(shí),寫出的解析式;
(III)在(II)的條件下,若函數(shù)g(x)為偶函數(shù),且當(dāng)時(shí),,求當(dāng)時(shí)g(x)的表達(dá)式,并求函數(shù)g(x)在R上的最小值及相應(yīng)的x值.
(I)由已知可得,.
(II).
(III)時(shí),的最大值是.
解析試題分析:(I)根據(jù)及導(dǎo)數(shù)的幾何意義即得到的關(guān)系.
(II)將表示成,應(yīng)用二次函數(shù)知識,當(dāng)時(shí),取到最大值,得到,從而得到.
(III)首先由函數(shù) 為偶函數(shù),且當(dāng)時(shí),
得到當(dāng)時(shí),通過求導(dǎo)數(shù)并討論時(shí)
時(shí),時(shí),的正負(fù)號,明確在區(qū)間是減函數(shù),在是增函數(shù),
肯定時(shí),有最小值.
再根據(jù)為偶函數(shù),得到時(shí),也有最小值,
作出結(jié)論.
試題解析:(I)由已知可得
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f0/4/1fluc2.png" style="vertical-align:middle;" />.
(II),
所以當(dāng)時(shí),取到最大值,此時(shí),
.
(III)因?yàn),函?shù) 為偶函數(shù),且當(dāng)時(shí),
所以,當(dāng)時(shí),
此時(shí),
當(dāng)時(shí),,當(dāng)時(shí),,
所以,在區(qū)間是減函數(shù),在是增函數(shù),
所以時(shí),有最小值.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/11/c/1wmdo4.png" style="vertical-align:middle;" />為偶函數(shù),故當(dāng)時(shí),也有最小值,
綜上可知時(shí),.
考點(diǎn):二次函數(shù)的性質(zhì),導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,且對于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P()為函數(shù)圖像上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求函數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于的函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為實(shí)常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn);
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:且.(注:為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中).
(Ⅰ)若為的極值點(diǎn),求的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式;
(Ⅲ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若時(shí),有極小值,
(1)求實(shí)數(shù)的取值;
(2)若數(shù)列中,,求證:數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù),若有極值且極值為,則與是否具有確定的大小關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)的極值,并指出是極大值還是極小值;
(Ⅱ)若,求證:在區(qū)間上,函數(shù)的圖像在函數(shù)的圖像的下方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com