大家知道:在平面幾何中,三角形的三條中線相交于一點,這個點叫三角形的重心,并且重心分中線之比為2:1(從頂點到中點).據(jù)此,我們拓展到空間:把空間四面體的頂點與對面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點,這點叫此四面體的重心.類比上述命題,請寫出四面體重心的一條性質:
 
考點:類比推理
專題:探究型,推理和證明
分析:本題考查的知識點是類比推理,由平面圖形的性質類比猜想空間幾何體的性質,一般的思路是:點到線,線到面,或是二維變?nèi)S;由題目中三角形的三條中線交于一點,且這一點到頂點的距離等于它到對邊中點距離的2倍的結論是二維線段長與線段長的關系,類比后的結論應該為三維的邊與邊的比例關系.
解答: 解:如圖所示,AE,BP為四面體的中軸線,P,E分別為△ACD,△BCD的重心,
連結PE,
因為AP:PF=2:1,BE:EF=2:1,
所以AP:PF=BE:EF,PE∥AB,
所以AG:GE=BG:GP=AB:PE=3:1.
故答案為:3:1.
點評:本題主要考查類比推理的知識點,解答本題的關鍵是由平面圖形的性質類比猜想空間幾何體的性質.類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若A、B是橢圓
x2
4
+y2=1上兩點,O為坐標原點,OH⊥AB于點H,又OA與OB斜率分別為k1,k2,且滿足k1•k2=-
3
4

(1)求點H的軌跡方程
(2)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個袋子中裝有大小形狀完全相同的編號分別為1,2,3,4,5的5個紅球與編號為1,2,3,4的4個白球,從中任意取出3個球.
(Ⅰ)從袋中任意取出3個球,求取出的3個球的編號為連續(xù)的自然數(shù)的概率;
(Ⅱ)記X為取出的3個球中編號的最大值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果軸截面為正方形的圓柱的側面積是4π,那么圓柱的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+2ay-1=0與l2:(2a-1)x-ay-1=0平行,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于在R上的函數(shù)y=f(x)滿足:(1)對任意x∈R,都有f(x3)=f3(x);(2)對任意x1,x2∈R,
x1≠x2,都有f(x1)≠f(x2),則f(0)+f(1)+f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6名學生報名參加數(shù)學,計算機,航模興趣小組,每人選報一項,則不同的報名方式有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若
a21
a20
<-1,且它的前n項和Sn有最大值,那么當Sn取最小正數(shù)時n的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=3x無交點,現(xiàn)有下列結論:
①方程f(f(x))=9x一定沒有實數(shù)根; 
②若a<0,則必存在實數(shù)x0,使f(f(x0))>9x0
③函數(shù)g(x)=ax2-bx+c的圖象與直線y=-3x也一定沒有交點;
④若a+b+c=0,則不等式f(f(x))<9x對一切實數(shù)都成立;
其中正確的結論是
 

查看答案和解析>>

同步練習冊答案