在等差數(shù)列{an}中,若
a21
a20
<-1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取最小正數(shù)時(shí)n的值為
 
考點(diǎn):等差數(shù)列的性質(zhì)
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)條件和等差數(shù)列的性質(zhì)得:a1+a40<0,再由等差數(shù)列的前n項(xiàng)和公式得S40<0,再由條件和此數(shù)列的首項(xiàng)和公差的符號(hào)判斷即可.
解答: 解:由
a21
a20
<-1得,a20+a21<0,即a1+a40<0,
∵等差數(shù)列{an}的前n項(xiàng)和Sn有最大值,
∴a1>0,且d<0,
∵a1+a40<0,∴S40=20(a1+a40)<0,
則使Sn的最小正數(shù)值的S39
故答案為:39.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì)和前n項(xiàng)和公式的靈活應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別為PC、PD、BC的中點(diǎn).
(1)求證:PA∥面EFG;
(2)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

大家知道:在平面幾何中,三角形的三條中線相交于一點(diǎn),這個(gè)點(diǎn)叫三角形的重心,并且重心分中線之比為2:1(從頂點(diǎn)到中點(diǎn)).據(jù)此,我們拓展到空間:把空間四面體的頂點(diǎn)與對(duì)面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點(diǎn),這點(diǎn)叫此四面體的重心.類(lèi)比上述命題,請(qǐng)寫(xiě)出四面體重心的一條性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四邊形ABCD中,|
AB
|+|
BD
|+|
DC
|=6,|
AB
||
BD
|+|
DC
|
BD
|=9,
AB
BD
=
DC
BD
=0,若P為線段BD上的動(dòng)點(diǎn),則
AP
AB
+
CP
CD
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的增函數(shù),且y=f(x)的圖象關(guān)于點(diǎn)(6,0)對(duì)稱(chēng).若實(shí)數(shù)x,y滿(mǎn)足不等式
f(x2-6x)+f(y2-8y+36)≤0,則x2+y2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)函數(shù) f(x),若存在區(qū)間M=[a,b]使得{y|y=f(x),x∈M}=M,則稱(chēng)f(x)為“穩(wěn)定函數(shù)”,給出下列函數(shù)
①f(x)=x2;②f(x)=tan
π
4
x③f(x)=lnx.其中為“穩(wěn)定函數(shù)”的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4x-2x+1+2的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z=1+i,則|z•
.
z
-z-1|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中真命題為
 
.(只填正確命題的序號(hào))
①函數(shù)f(x)=
3x-5
2x+1
的圖象關(guān)于點(diǎn)(-
1
2
3
2
)對(duì)稱(chēng);
②命題“任意x∈R,均有x2+2x-3≥0”的否定是:“存在x∈R,使得x2+2x-3<0
③函數(shù)f(x)=(x-1)2在點(diǎn)(0,1)處的切線與坐標(biāo)軸圍成圖形的面積是1;
④將函數(shù)f(x)=sin(x-
π
4
)(x∈R)的圖象向右平移
π
4
個(gè)單位得到的圖象關(guān)于y軸對(duì)稱(chēng).

查看答案和解析>>

同步練習(xí)冊(cè)答案