【題目】如圖,在三棱柱中,底面 ,、分別是棱、的中點.

(Ⅰ)求證:平面

(Ⅱ)若線段上的點滿足平面平面,試確定點的位置,并說明理由.

(Ⅲ)證明:

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.

【解析】試題分析:(1) 因為底面,所以,,由線面垂直的判定定理可證得平面;(2) 因為面,面,面所以,根據(jù)三角形的中位線可得是線段的中點;(3)先證明, 由()可得由線面垂直的判定定理可得,所以,所以

試題解析:

(Ⅰ)因為底面,所以,

因為,所以

(Ⅱ)因為面,面,面,

所以

因為在是棱的中點,所以是線段的中點.

(Ⅲ)因為三棱柱,所以側(cè)面是棱形,所以,,

由()可得

因為,

所以

所以

又因為,分別為棱,的中點,所以

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進行教學(兩班的學生學習數(shù)學勤奮程度和自覺性一致),數(shù)學期終考試成績莖葉圖如下:

(1)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關(guān)”.

附:參考公式及數(shù)據(jù)

(2)從兩個班數(shù)學成績不低于90分的同學中隨機抽取3名,設(shè)為抽取成績不低于95分同學人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,已知=3.

(1)求證:tan B=3tan A;

(2)若cos C,求A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面內(nèi)有向量 =(1,7), =(5,1), =(2,1),點X為直線OP上的一個動點.
(1)當 取最小值時,求 的坐標;
(2)當點X滿足(1)的條件和結(jié)論時,求cos∠AXB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)若經(jīng)過定點的直線與曲線交于兩點, 是線段的中點,過軸的平行線與曲線相交于點,試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(文)已知矩形ABB1A1是圓柱體的軸截面,O、O1分別是下底面圓和上底面圓的圓心,母線長與底面圓的直徑長之比為2:1,且該圓柱體的體積為32π,如圖所示.

(1)求圓柱體的側(cè)面積S側(cè)的值;
(2)若C1是半圓弧 的中點,點C在半徑OA上,且OC= OA,異面直線CC1與BB1所成的角為θ,求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Tn= n2 n,且an+2+3log4bn=0(n∈N*
(1)求{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=anbn , 求數(shù)列{cn}的前n項和Sn;
(3)若cn m2+m﹣1對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調(diào)查,將調(diào)查情況進行整理后制成下表:

年齡

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人數(shù)

4

5

8

5

3

年齡

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人數(shù)

6

7

3

5

4

經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機選取2人,進行跟蹤調(diào)查.

(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;

(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[﹣ , ]上的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習冊答案