【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)每臺儀器能出廠的對立事件為不能出廠,根據(jù)對立事件的概率可得結(jié)果;(Ⅱ)由表可知生產(chǎn)一臺儀器所獲得的利潤為元即初檢不合格再次檢測合格,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得結(jié)果;(Ⅲ)由題意可得可取, , , , , ,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算出概率,可得分布列及期望.
試題解析:(Ⅰ)記每臺儀器不能出廠為事件,則,
所以每臺儀器能出廠的概率.
(Ⅱ)生產(chǎn)一臺儀器利潤為1600的概率.
(Ⅲ)可取, , , , , .
, , , , , .
的分布列為:
3800 | 3500 | 3200 | 500 | 200 | ||
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了了解職工的工作狀況,隨機(jī)抽取了一個(gè)車間對職工工作時(shí)間的情況進(jìn)行暗訪,工作時(shí)間在小時(shí)及以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成組畫出頻率分布直方圖(如圖所示),但由于工作疏忽,沒有畫出最后一組,只知道最后一組的頻數(shù)是.
(Ⅰ)求這次暗訪中工作時(shí)間不合格的人數(shù);
(Ⅱ)已知在工作時(shí)間超過小時(shí)的人中有兩名女職工,現(xiàn)要從工作時(shí)間在小時(shí)以上的人中選出兩名代表在職工代表大會上發(fā)言,求至少選出一位女職工作代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn), ().
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、為實(shí)數(shù),,,記集合,,則下列命題為真命題的是( )
A.若集合的元素個(gè)數(shù)為2,則集合的元素個(gè)數(shù)也一定為2
B.若集合的元素個(gè)數(shù)為2,則集合的元素個(gè)數(shù)也一定為2
C.若集合的元素個(gè)數(shù)為3,則集合的元素個(gè)數(shù)也一定為3
D.若集合的元素個(gè)數(shù)為3,則集合的元素個(gè)數(shù)也一定為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線過,傾斜角為,以為極點(diǎn), 軸在平面直角坐標(biāo)系中,直線,曲線(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)若曲線的極坐標(biāo)方程為,且曲線分別交于點(diǎn)兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在點(diǎn)處的切線與直線平行,且函數(shù)有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的值和實(shí)數(shù)的取值范圍;
(2)記函數(shù)的兩個(gè)零點(diǎn)為,求證: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,已知直線的參數(shù)方程為為參數(shù), 以原點(diǎn)O為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
(1)寫出直線的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)若直線與曲線C相交于A,B 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形中, , , , 、分別是邊、上的點(diǎn),且,沿將折起并連接成如圖的多面體,折后.
(Ⅰ)求證: ;
(Ⅱ)若折后直線與平面所成角的正弦值是,求證:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com