【題目】本小題滿分13分甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數(shù)據(jù);

2現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.

【答案】1見解析;2.

【解析】

試題

1根據(jù)所給的兩組數(shù)據(jù),用十位做莖,個位做葉,寫出莖葉圖,根據(jù)乙組數(shù)據(jù)有8個數(shù)字,這組數(shù)據(jù)的中位數(shù)是最中間兩個數(shù)的平均數(shù),乙組數(shù)據(jù)的中位數(shù)為85.

2根據(jù)所給的兩組數(shù)據(jù),分別求出兩組數(shù)據(jù)的平均數(shù),再求出兩組數(shù)據(jù)的方差,比較所得的兩組結(jié)果,甲和乙的平均數(shù)相同,甲的方差較小,成績比較穩(wěn)定.

試題解析: 1作出莖葉圖如下:

2由題意可得:

78+79+81+82+84+88+93+95=85,

75+80+80+83+85+90+92+95=85.

所以 [78-85279-85281-85282-85284-85288-85293-85295-852]=35.5,

[75-85280-85280-85283-85285-85290-85292-85295-852]=41.

, 甲的成績較穩(wěn)定,派甲參賽比較合適.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,)在橢圓C上.

(1)求橢圓C的方程;

(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過右焦點F2的直線l交橢圓于AB兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設(shè)計甲、乙兩種貨物應(yīng)各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?

貨物

體積

重量

利潤百元

5

2

20

4

5

10

托運限制

24

13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點

坐標(biāo);若不存在說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)

(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產(chǎn)成本

檢驗費/次

調(diào)試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);

(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均在35微克/立方米以下空氣質(zhì)量為一級,在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級,在75微克/立方米以上空氣質(zhì)量為超標(biāo).北方某市環(huán)保局從2015年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如下圖所示(十位為莖,個位為葉).

(1)15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級的天數(shù),求的分布列;

(2)以這15天的PM2.5日均值來估計一年的空氣質(zhì)量情況,則一年(按360天計算)中大約有多少天的空氣質(zhì)量達(dá)到一級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.

1)求橢圓的方程

2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結(jié)并延長交橢圓于點當(dāng)的面積取得最大值時,求的面積.

查看答案和解析>>

同步練習(xí)冊答案