【題目】已知函數(shù) 在點(diǎn)處的切線與直線平行,且函數(shù)有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的值和實(shí)數(shù)的取值范圍;
(2)記函數(shù)的兩個(gè)零點(diǎn)為,求證: (其中為自然對(duì)數(shù)的底數(shù)).
【答案】(1), 且(2)見解析
【解析】試題分析:(1)由切線求出,再由求導(dǎo)得到在單調(diào)遞減,在單調(diào)遞增, ,則且;(2)設(shè),欲證,即證,只須證,記函數(shù),通過求導(dǎo)分析得.
試題解析:
解:(1)由, 得:
由
進(jìn)而得,
故當(dāng)時(shí), ;當(dāng)時(shí), ;
所以函數(shù)在單調(diào)遞減,在單調(diào)遞增,
要使函數(shù)在有兩個(gè)零點(diǎn),則
且
(用分離參數(shù),轉(zhuǎn)化為數(shù)形結(jié)合,可對(duì)應(yīng)給分)
(2)由(1),我們不妨設(shè)
欲證,即證
又函數(shù)在單調(diào)遞增,即證
由題設(shè),從而只須證
記函數(shù),
則,
記,得
因?yàn)?/span>,所以恒成立,即在上單調(diào)遞增,又
所以在上恒成立,即在單調(diào)遞減
所以當(dāng)時(shí), ,即
從而得.
上恒成立,即在單調(diào)調(diào)遞
所以當(dāng)時(shí), ,即
從而得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>個(gè)組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()
A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓: 的離心率,左頂點(diǎn)為,過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).
(1)求橢圓的方程;
(2)已知為的中點(diǎn),是否存在定點(diǎn),對(duì)于任意的都有,若存在,求出點(diǎn)的
坐標(biāo);若不存在說明理由;
(3)若過點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤(rùn)為1600元的概率(注:利潤(rùn)出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤(rùn),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
(1)若,,求不等式的解;
(2)對(duì)任意,,試確定函數(shù)的最小值(用含,的代數(shù)式表示),若正數(shù)、滿足,則、分別取何值時(shí),有最小值,并求出此最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均在35微克/立方米以下空氣質(zhì)量為一級(jí),在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級(jí),在75微克/立方米以上空氣質(zhì)量為超標(biāo).北方某市環(huán)保局從2015年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如下圖所示(十位為莖,個(gè)位為葉).
(1)15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;
(2)以這15天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)生產(chǎn)公司投資A生產(chǎn)線500萬(wàn)元,每萬(wàn)元可創(chuàng)造利潤(rùn)萬(wàn)元,該公司通過引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線A投資減少了x萬(wàn)元,且每萬(wàn)元的利潤(rùn)提高了;若將少用的x萬(wàn)元全部投入B生產(chǎn)線,每萬(wàn)元?jiǎng)?chuàng)造的利潤(rùn)為萬(wàn)元,其中.
若技術(shù)改進(jìn)后A生產(chǎn)線的利潤(rùn)不低于原來A生產(chǎn)線的利潤(rùn),求x的取值范圍;
若生產(chǎn)線B的利潤(rùn)始終不高于技術(shù)改進(jìn)后生產(chǎn)線A的利潤(rùn),求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的焦點(diǎn)為,直線過點(diǎn)且依次交拋物線及圓于四點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 為等邊三角形,平面平面, , , , , 為的中點(diǎn).
()求證: .
()求二面角的余弦值.
()若平面,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com