【題目】函數(shù)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)的內(nèi)角、、的對(duì)邊分別為、,又,且銳角滿足,若邊的中點(diǎn),求的周長(zhǎng).

【答案】1;(2

【解析】

1)利用函數(shù)圖象求得、的值,再由函數(shù)的圖象過(guò)點(diǎn)求得的值,進(jìn)而可得出,由此可得出,然后解不等式,即可得出函數(shù)的單調(diào)遞增區(qū)間;;

2)由可求得角的值,利用正弦定理邊角互化思想得出,結(jié)合余弦定理可求得、,進(jìn)而可判斷出為直角三角形,且角為直角.可計(jì)算出的長(zhǎng),進(jìn)而可求得的周長(zhǎng).

1)由函數(shù)的部分圖象可得,

,即,則,

又函數(shù)的圖象過(guò)點(diǎn),則,即

,,

,則,

,得,

所以函數(shù)的單調(diào)增區(qū)間為

2)由,得,

因?yàn)?/span>,所以,所以,得,

,由正弦定理得

由余弦定理,得,即,

①②解得,

,所以,所以為直角三角形,且角為直角.

,所以的周長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7個(gè)球,其中紅色球2個(gè)(同色不加區(qū)分),白色,黃色,藍(lán)色,紫色,灰色球各1個(gè),將它們排成一行,要求最左邊不排白色,2個(gè)紅色排一起,黃色和紅色不相鄰,則有________種不同的排法(用數(shù)字回答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有4個(gè)大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字12,3,4.現(xiàn)每次有放回地從中任意取出一個(gè)小球,直到標(biāo)有偶數(shù)的球都取到過(guò)就停止.小明用隨機(jī)模擬的方法估計(jì)恰好在第4次停止摸球的概率,利用計(jì)算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有4個(gè)數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下21組隨機(jī)數(shù):由此可以估計(jì)恰好在第4次停止摸球的概率為(

1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312

2412 1413 4331 2234 4422 3241 4331 4234

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語(yǔ)文和數(shù)學(xué)各自都必須上兩節(jié)而且兩節(jié)連上,而英語(yǔ)、物理、化學(xué)、生物最多上一節(jié),則不同的功課安排有________種情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線逆時(shí)針旋轉(zhuǎn)得到曲線.

1)求曲線的直角坐標(biāo)方程;

2)點(diǎn)的極坐標(biāo)為,直線過(guò)點(diǎn)且與曲線交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將曲線方程,先向左平移2個(gè)單位,再向上平移2個(gè)單位,得到曲線C.

1)點(diǎn)Mx,y)為曲線C上任意一點(diǎn),寫出曲線C的參數(shù)方程,并求出的最大值;

2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點(diǎn)為E,F,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段EF的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級(jí)夢(mèng)數(shù)列”.

(1)若是“級(jí)夢(mèng)數(shù)列”且.求: 的值;

(2)若是“級(jí)夢(mèng)數(shù)列”且滿足, ,求的最小值;

(3)若是“0級(jí)夢(mèng)數(shù)列”且,設(shè)數(shù)列的前項(xiàng)和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面,點(diǎn)中點(diǎn),點(diǎn)為點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),.

1)求證:平面平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)政府對(duì)PM2.5采用如下標(biāo)準(zhǔn):

某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉).

1)求這10天數(shù)據(jù)的中位數(shù).

2)從這10天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;

3)以這10天的PM2.5日均值來(lái)估計(jì)這180天的空氣質(zhì)量情況,記為這180天空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案